Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36501902

ABSTRACT

Potentiometry with membrane selective electrodes is preferable for measuring the various constituents of pharmaceuticals. In this work, carbon paste electrodes (CPE) were prepared, modified, and tested for the determination of maprotiline hydrochloride, which acts as an antidepressant. The proposed CPE was based on an ionic association complex of maprotiline-tetraphenylborate, 2-nitrophenyloctyl as a binder, and sodium tetraphenylborate as an ionic lipophilic additive. The optimized composition improved potentiometric properties up to theoretical Nernst response values of -59.5 ± 0.8 mV dec-1, in the concentration range of maprotiline from 1.6 × 10-7 to 1.0 × 10-2 mol L-1, and a detection limit of 1.1 × 10-7 mol L-1. The CPE provides excellent reversibility and reproducibility, exhibits a fast response time, and is applicable over a wide pH range. No significant effect was observed in several interfering species tested. The proposed electrode was used for the precise determination of maprotiline in pure solutions, urine samples, and a real sample-the drug Ludiomil.


Subject(s)
Carbon , Maprotiline , Carbon/chemistry , Reproducibility of Results , Potentiometry , Pharmaceutical Preparations
2.
Sensors (Basel) ; 22(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36559958

ABSTRACT

A simple, sensitive, cost effective, and reliable enzymatic glucose biosensor was developed and tested. Nitrogen-doped heat-treated graphene oxide nanoribbons (N-htGONR) were used for modification of commercially available screen-printed carbon electrodes (SPCEs), together with MnO2 and glucose oxidase. The resulting sensors were optimized and used to detect glucose in a wide linear range (0.05-5.0 mM) by a simple amperometric method, where the limit of detection was determined to be 0.008 mM. (lifetime), and reproducibility studies were also carried out and yielded favorable results. The sensor was then tested against potential interfering species present in food and beverage samples before its application to real matrix. Spiked beer samples were analyzed (with glucose recovery between 93.5 and 103.5%) to demonstrate the suitability of the developed sensor towards real food and beverage sample applications.


Subject(s)
Biosensing Techniques , Graphite , Nanotubes, Carbon , Reproducibility of Results , Manganese Compounds , Oxides , Electrochemical Techniques/methods , Glucose , Electrodes , Biosensing Techniques/methods
3.
Sensors (Basel) ; 21(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34960395

ABSTRACT

Four different graphene-based nanomaterials (htGO, N-htGO, htGONR, and N-htGONR) were synthesized, characterized, and used as a modifier of carbon paste electrode (CPE) in order to produce a reliable, precise, and highly sensitive non-enzymatic amperometric hydrogen peroxide sensor for complex matrices. CPE, with their robustness, reliability, and ease of modification, present a convenient starting point for the development of new sensors. Modification of CPE was optimized by systematically changing the type and concentration of materials in the modifier and studying the prepared electrode surface by cyclic voltammetry. N-htGONR in combination with manganese dioxide (1:1 ratio) proved to be the most appropriate material for detection of hydrogen peroxide in pharmaceutical and saliva matrices. The developed sensor exhibited a wide linear range (1.0-300 µM) and an excellent limit of detection (0.08 µM) and reproducibility, as well as high sensitivity and stability. The sensor was successfully applied to real sample analysis, where the recovery values for a commercially obtained pharmaceutical product were between 94.3% and 98.0%. Saliva samples of a user of the pharmaceutical product were also successfully analyzed.


Subject(s)
Graphite , Nanotubes, Carbon , Carbon , Electrochemical Techniques , Electrodes , Hydrogen Peroxide , Limit of Detection , Manganese Compounds , Oxides , Reproducibility of Results , Saliva
4.
Sensors (Basel) ; 21(9)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922519

ABSTRACT

A novel promising carbon paste electrode with excellent potentiometric properties was prepared for the analysis of trihexyphenidyl hydrochloride (THP), the acetylcholine receptor and an anticholinergic drug in real samples. It contains 10.2% trihexyphenidy-tetraphenylborate ionic pair as the electroactive material, with the addition of 3.9% reduced graphene oxide and 0.3% of anionic additive into the paste, which consists of 45.0% dibutylphthalate as the solvent mediator and 40.6% graphite. Under the optimized experimental conditions, the electrode showed a Nernstian slope of 58.9 ± 0.2 mV/decade with a regression coefficient of 0.9992. It exhibited high selectivity and reproducibility as well as a fast and linear dynamic response range from 4.0 × 10-7 to 1.0 × 10-2 M. The electrode remained usable for up to 19 days. Analytical applications showed excellent recoveries ranging from 96.8 to 101.7%, LOD was 2.5 × 10-7 M. The electrode was successfully used for THP analysis of pharmaceutical and biological samples.


Subject(s)
Graphite , Pharmaceutical Preparations , Carbon , Electrodes , Potentiometry , Reproducibility of Results , Trihexyphenidyl
5.
Front Chem ; 8: 582746, 2020.
Article in English | MEDLINE | ID: mdl-33173770

ABSTRACT

The formation of metal complexes with phytic acid is a complex process that depends strongly on the metal-to-ligand molar ratio, pH value and consequent protonation level of the phytate ligand as well as accompanying side reactions, in particular metal hydrolysis and precipitation of the formed coordination compounds. In the present work, the potentiometric titration technique was used in combination with a detailed analysis of the equivalent point dependencies for selected biologically relevant monovalent and divalent cations from the groups of alkaline earths and transition metals, namely: Mg(II), Zn(II), Fe(II), Cu(I), and Cu(II) ions. The investigation of complex formation mechanism, the evaluation of the species formed, and the identification of other side reactions was based on the examination of three distinct equivalent points, which were detectable by alkalimetric titrations of phytic acid in the presence of selected metal ions. It has been demonstrated that alkaline earth metals interact with different binding site(s) than the transition metals, and experiments with both oxidation states of copper revealed similar complexing characteristics, which depend mainly on the ionic radius (and not on the ionic charge as initially expected). Quantitative data on phytate complexation, hydroxide formation and complex precipitation are presented herein for all metals studied, including Cu(I), which was investigated for the first time by means of alkalimetric titration.

SELECTION OF CITATIONS
SEARCH DETAIL
...