Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Appl Biosci ; 13(1): 45-53, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9088708

ABSTRACT

MOTIVATION: Sequence alignment is the problem of finding the optimal character-by-character correspondence between two sequences. It can be readily solved in O(n2) time and O(n2) space on a serial machine, or in O(n) time with O(n) space per O(n) processing elements on a parallel machine. Hirschberg's divide-and-conquer approach for finding the single best path reduces space use by a factor of n while inducing only a small constant slowdown to the serial version. RESULTS: This paper presents a family of methods for computing sequence alignments with reduced memory that are well suited to serial or parallel implementation. Unlike the divide-and-conquer approach, they can be used in the forward-backward (Baum-Welch) training of linear hidden Markov models, and they avoid data-dependent repartitioning, making them easier to parallelize. The algorithms feature, for an arbitrary integer L, a factor proportional to L slowdown in exchange for reducing space requirement from O(n2) to O(n1 square root of n). A single best path member of this algorithm family matches the quadratic time and linear space of the divide-and-conquer algorithm. Experimentally, the O(n1.5)-space member of the family is 15-40% faster than the O(n)-space divide-and-conquer algorithm.


Subject(s)
Algorithms , Computers , Sequence Alignment/methods , Computer Systems , Evaluation Studies as Topic , Markov Chains , Sequence Alignment/statistics & numerical data , Software
2.
Article in English | MEDLINE | ID: mdl-7584431

ABSTRACT

Sequence comparison with affine gap costs is a problem that is readily parallelizable on simple single-instruction, multiple-data stream (SIMD) parallel processors using only constant space per processing element. Unfortunately, the twin problem of sequence alignment, finding the optimal character-by-character correspondence between two sequences, is more complicated. While the innovative O(n2)-time and O(n)-space serial algorithm has been parallelized for multiple-instruction, multiple-data stream (MIMD) computers with only a communication-time slowdown, typically O(log n), it is not suitable for hardware-efficient SIMD parallel processors with only local communication. This paper proposes several methods of computing sequence alignments with limited memory per processing element. The algorithms are also well-suited to serial implementation. The simpler algorithms feature, for an arbitrary integer L, a factor of L slowdown in exchange for reducing space requirements from O(n) to O(L square root of n) per processing element. Using this result, we describe an O(n log n) parallel time algorithm that requires O(log n) space per processing element on O(n) SIMD processing elements with only a mesh or linear interconnection network.


Subject(s)
Algorithms , Computer Systems , Molecular Sequence Data , Sequence Homology , Software , Computer Communication Networks
SELECTION OF CITATIONS
SEARCH DETAIL
...