Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Langmuir ; 33(37): 9361-9377, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28616993

ABSTRACT

We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li+ probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.

2.
Microsc Microanal ; 22(6): 1198-1221, 2016 12.
Article in English | MEDLINE | ID: mdl-27881211

ABSTRACT

Poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymers synthesized via inverse vulcanization represent an emerging class of electrochemically active polymers recently used in cathodes for Li-S batteries, capable of realizing enhanced capacity retention (1,005 mAh/g at 100 cycles) and lifetimes of over 500 cycles. The composite cathodes are organized in complex hierarchical three-dimensional (3D) architectures, which contain several components and are challenging to understand and characterize using any single technique. Here, multimode analytical scanning and transmission electron microscopies and energy-dispersive X-ray/electron energy-loss spectroscopies coupled with multivariate statistical analysis and tomography were applied to explore origins of the cathode-enhanced capacity retention. The surface topography, morphology, bonding, and compositions of the cathodes created by combining sulfur copolymers with varying 1,3-diisopropenylbenzene content and conductive carbons have been investigated at multiple scales in relation to the electrochemical performance and physico-mechanical stability. We demonstrate that replacing the elemental sulfur with organosulfur copolymers improves the compositional homogeneity and compatibility between carbons and sulfur-containing domains down to sub-5 nm length scales resulting in (a) intimate wetting of nanocarbons by the copolymers at interfaces; (b) the creation of 3D percolation networks of conductive pathways involving graphitic-like outer shells of aggregated carbons;

3.
Gels ; 2(2)2016 Apr 08.
Article in English | MEDLINE | ID: mdl-30674147

ABSTRACT

Highly porous, low density palladium nanoparticle/clay aerogel materials have been produced and demonstrated to possess significant catalytic activity for olefin hydrogenation and isomerization reactions at low/ambient pressures. This technology opens up a new route for the production of catalytic materials.

4.
ACS Macro Lett ; 4(1): 111-114, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-35596381

ABSTRACT

The synthesis of polymeric materials using elemental sulfur (S8) as the chemical feedstock has recently been developed using a process termed inverse vulcanization. The preparation of chemically stable sulfur copolymers was previously prepared by the inverse vulcanization of S8 and 1,3-diisopropenylbenzene (DIB); however, the development of synthetic methods to introduce new chemical functionality into this novel class of polymers remains an important challenge. In this report the introduction of polythiophene segments into poly(sulfur-random-1,3-diisopropenylbenzene) is achieved by the inverse vulcanization of S8 with a styrenic functional 3,4-propylenedioxythiophene (ProDOT-Sty) and DIB, followed by electropolymerization of ProDOT side chains. This methodology demonstrates for the first time a facile approach to introduce new functionality into sulfur and high sulfur content polymers, while specifically enhancing the charge conductivity of these intrinsically highly resistive materials.

5.
ACS Macro Lett ; 4(9): 862-866, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-35596448

ABSTRACT

We report on dynamic covalent polymers derived from elemental sulfur that can be used as thermally healable optical polymers for mid-IR thermal imaging applications. By accessing dynamic S-S bonds in these sulfur copolymers, surface scratches and defects of free-standing films of poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r-DIB) can be thermally healed, which enables damaged lenses and windows from these materials to be reprocessed to recover their IR imaging performance. Correlation of the mechanical properties of these sulfur copolymers with different curing methods provided insights to reprocess damaged samples of these materials. Mid-IR thermal imaging experiments with windows before and after healing of surface defects demonstrated successful application of these materials to create a new class of "scratch and heal" optical polymers. The use of dynamic covalent polymers as healable materials for IR applications offers a unique advantage over the current state of the art (e.g., germanium or chalcogenide glasses) due to both the dynamic character and useful optical properties of S-S bonds.

6.
Adv Mater ; 26(19): 3014-8, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24659231

ABSTRACT

Polymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported. High quality imaging in the near (1.5 µm) and mid-IR (3-5 µm) regions using high refractive index polymeric lenses from these sulfur materials was demonstrated.


Subject(s)
Polymers/chemistry , Sulfur/chemistry , Humans , Infrared Rays , Refractometry
7.
ACS Nano ; 8(4): 3272-84, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24645795

ABSTRACT

The synthesis of a modular colloidal polymer system based on the dipolar assembly of CdSe@CdS nanorods functionalized with a single cobalt nanoparticle "tip" (CoNP-tip) is reported. These heterostructured nanorods spontaneously self-assembled via magnetic dipolar associations of the cobalt domains. In these assemblies, CdSe@CdS nanorods were carried as densely grafted side chain groups along the dipolar NP chain to form bottlebrush-type colloidal polymers. Nanorod side chains strongly affected the conformation of individual colloidal polymer bottlebrush chains and the morphology of thin films. Dipolar CoNP-tipped nanorods were then used as "colloidal monomers" to form mesoscopic assemblies reminiscent of traditional copolymers possessing segmented and statistical compositions. Investigation of the phase behavior of colloidal polymer blends revealed the formation of mesoscopic phase separated morphologies from segmented colloidal copolymers. These studies demonstrated the ability to control colloidal polymer composition and morphology in a manner observed for classical polymer systems by synthetic control of heterostructured nanorod structure and harnessing interparticle dipolar associations.

8.
ACS Macro Lett ; 3(3): 229-232, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-35590512

ABSTRACT

Sulfur-rich copolymers based on poly(sulfur-random-1,3-diisopropenylbenzene) (poly(S-r-DIB)) were synthesized via inverse vulcanization to create cathode materials for lithium-sulfur battery applications. These materials exhibit enhanced capacity retention (1005 mAh/g at 100 cycles) and battery lifetimes over 500 cycles at a C/10 rate. These poly(S-r-DIB) copolymers represent a new class of polymeric electrode materials that exhibit one of the highest charge capacities reported, particularly after extended charge-discharge cycling in Li-S batteries.

9.
ACS Macro Lett ; 3(12): 1258-1261, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-35610836

ABSTRACT

The synthesis of dynamic covalent polymers with controllable amounts of sulfur-sulfur (S-S) bonds in the polymer backbone via inverse vulcanization of elemental sulfur (S8) and 1,3-diisopropenylbenzene (DIB) is reported. An attractive feature of the inverse vulcanization process is the ability to control the number and dynamic nature of S-S bonds in poly(sulfur-random-(1,3-diisopropenylbenzene)) (poly(S-r-DIB) copolymers by simple variation of S8/DIB feed ratios in the copolymerization. S-S bonds in poly(S-r-DIB) copolymers of high sulfur content and sulfur rank were found to be more dynamic upon exposure to either heat, or mechanical stimuli. Interrogation of dynamic S-S bonds was conducted in the solid-state utilizing electron paramagnetic resonance spectroscopy and in situ rheological measurements. Time-dependent rheological property behavior demonstrated a compositional dependence of the healing behavior in the copolymers, with the highest sulfur (80 wt % sulfur) content affording the most rapid dynamic response and recovery of rheological properties.

10.
Nat Chem ; 5(6): 518-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23695634

ABSTRACT

An excess of elemental sulfur is generated annually from hydrodesulfurization in petroleum refining processes; however, it has a limited number of uses, of which one example is the production of sulfuric acid. Despite this excess, the development of synthetic and processing methods to convert elemental sulfur into useful chemical substances has not been investigated widely. Here we report a facile method (termed 'inverse vulcanization') to prepare chemically stable and processable polymeric materials through the direct copolymerization of elemental sulfur with vinylic monomers. This methodology enabled the modification of sulfur into processable copolymer forms with tunable thermomechanical properties, which leads to well-defined sulfur-rich micropatterned films created by imprint lithography. We also demonstrate that these copolymers exhibit comparable electrochemical properties to elemental sulfur and could serve as the active material in Li-S batteries, exhibiting high specific capacity (823 mA h g(-1) at 100 cycles) and enhanced capacity retention.


Subject(s)
Polymers/chemistry , Sulfur/chemistry , Alkenes/chemistry , Electric Power Supplies , Electrochemistry , Electrodes , Kinetics , Lithium/chemistry , Polymerization , Polymers/chemical synthesis , Rheology , Solubility , Transition Temperature
12.
ACS Nano ; 3(10): 3143-57, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19799415

ABSTRACT

The preparation of polystyrene-coated cobalt oxide nanowires is reported via the colloidal polymerization of polymer-coated ferromagnetic cobalt nanoparticles (PS-CoNPs). Using a combination of dipolar nanoparticle assembly and a solution oxidation of preorganized metallic colloids, interconnected nanoparticles of cobalt oxide spanning micrometers in length were prepared. The colloidal polymerization of PS-CoNPs into cobalt oxide (CoO and Co(3)O(4)) nanowires was achieved by bubbling O(2) into PS-CoNP dispersions in 1,2-dichlorobenzene at 175 degrees C. Calcination of thin films of PS-coated cobalt oxide nanowires afforded Co(3)O(4) metal oxide materials. Transmission electron microscopy (TEM) revealed the formation of interconnected nanoparticles of cobalt oxide with hollow inclusions, arising from a combination of dipolar assembly of PS-CoNPs and the nanoscale Kirkendall effect in the oxidation reaction. Using a wide range of spectroscopic and electrochemical characterization techniques, we demonstrate that cobalt oxide nanowires prepared via this novel methodology were electroactive with potential applications as nanostructured electrodes for energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL
...