Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 208
Filter
2.
Ann Intensive Care ; 14(1): 78, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776032

ABSTRACT

BACKGROUND: Reverse triggering (RT) was described in 2013 as a form of patient-ventilator asynchrony, where patient's respiratory effort follows mechanical insufflation. Diagnosis requires esophageal pressure (Pes) or diaphragmatic electrical activity (EAdi), but RT can also be diagnosed using standard ventilator waveforms. HYPOTHESIS: We wondered (1) how frequently RT would be present but undetected in the figures from literature, especially before 2013; (2) whether it would be more prevalent in the era of small tidal volumes after 2000. METHODS: We searched PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials, from 1950 to 2017, with key words related to asynchrony to identify papers with figures including ventilator waveforms expected to display RT if present. Experts labelled waveforms. 'Definite' RT was identified when Pes or EAdi were in the tracing, and 'possible' RT when only flow and pressure waveforms were present. Expert assessment was compared to the author's descriptions of waveforms. RESULTS: We found 65 appropriate papers published from 1977 to now, containing 181 ventilator waveforms. 21 cases of 'possible' RT and 25 cases of 'definite' RT were identified by the experts. 18.8% of waveforms prior to 2013 had evidence of RT. Most cases were published after 2000 (1 before vs. 45 after, p = 0.03). 54% of RT cases were attributed to different phenomena. A few cases of identified RT were already described prior to 2013 using different terminology (earliest in 1997). While RT cases attributed to different phenomena decreased after 2013, 60% of 'possible' RT remained missed. CONCLUSION: RT has been present in the literature as early as 1997, but most cases were found after the introduction of low tidal volume ventilation in 2000. Following 2013, the number of undetected cases decreased, but RT are still commonly missed. Reverse Triggering, A Missed Phenomenon in the Literature. Critical Care Canada Forum 2019 Abstracts. Can J Anesth/J Can Anesth 67 (Suppl 1), 1-162 (2020). https://doi-org.myaccess.library.utoronto.ca/ https://doi.org/10.1007/s12630-019-01552-z .

4.
Antibiotics (Basel) ; 13(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38667051

ABSTRACT

Antimicrobial de-escalation (ADE) is defined as the discontinuation of one or more antimicrobials in empirical therapy, or the replacement of a broad-spectrum antimicrobial with a narrower-spectrum antimicrobial. The aim of this review is to provide an overview of the available literature on the effectiveness and safety of ADE in critically ill patients, with a focus on special conditions such as anti-fungal therapy and high-risk categories. Although it is widely considered a safe strategy for antimicrobial stewardship (AMS), to date, there has been no assessment of the effect of de-escalation on the development of resistance. Conversely, some authors suggest that prolonged antibiotic treatment may be a side effect of de-escalation, especially in high-risk categories such as neutropenic critically ill patients and intra-abdominal infections (IAIs). Moreover, microbiological documentation is crucial for increasing ADE rates in critically ill patients with infections, and efforts should be focused on exploring new diagnostic tools to accelerate pathogen identification. For these reasons, ADE can be safely used in patients with infections, as confirmed by high-quality and reliable microbiological samplings, although further studies are warranted to clarify its applicability in selected populations.

5.
Article in English | MEDLINE | ID: mdl-38656318

ABSTRACT

Our study investigates the post-mortem findings of the diaphragm's muscular structural changes in mechanically ventilated COVID-19 patients. Diaphragm samples of the right side from 42 COVID-19 critically ill patients were analyzed and correlated with the type and length of mechanical ventilation (MV), ventilatory parameters, prone positioning, and use of sedative drugs. The mean number of fibers was 550±626. The cross-sectional area was 4120±3280 µm2, while the muscular fraction was 0.607±0.126. The overall population was clustered into two distinct populations (clusters 1 and 2). Cluster 1 showed a lower percentage of slow myosin fiber and higher fast fiber content than cluster 2, 68% versus 82%, p<0.00001, and 29.8% versus 18.8%, p=0.00045 respectively. The median duration of MV was 180 (41-346) hours. In cluster 1, a relationship between assisted ventilation and fast myosin fiber percentage (R2=-0.355, p=0.014) was found. In cluster 2, fast fiber content increased with increasing the length of the controlled MV (R2=0.446, p=0.006). A high grade of fibrosis was reported. Cluster 1 was characterized by fibers' atrophy and cluster 2 by hypertrophy, supposing different effects of ventilation on the diaphragm but without excluding a possible direct viral effect on diaphragmatic fibers.

6.
Microbiol Spectr ; 12(4): e0357423, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38466118

ABSTRACT

Few data are available on the lung microbiota composition of patients with coronavirus disease 2019-related acute respiratory distress syndrome (C-ARDS) receiving invasive mechanical ventilation (IMV). Moreover, it has never been investigated whether there is a potential correlation between lung microbiota communities and respiratory mechanics. We performed a prospective observational study in two intensive care units of a university hospital in Italy. Lung microbiota was investigated by bacterial 16S rRNA gene sequencing, performed on bronchoalveolar lavage fluid samples withdrawn after intubation. The lung bacterial communities were analyzed after stratification by respiratory system compliance/predicted body weight (Crs) and ventilatory ratio (VR). Weaning from IMV and hospital survival were assessed as secondary outcomes. In 70 C-ARDS patients requiring IMV from 1 April through 31 December 2020, the lung microbiota composition (phylum taxonomic level, permutational multivariate analysis of variance test) significantly differed between who had low Crs vs those with high Crs (P = 0.010), as well as in patients with low VR vs high VR (P = 0.012). As difference-driving taxa, Proteobacteria (P = 0.017) were more dominant and Firmicutes (P = 0.040) were less dominant in low- vs high-Crs patients. Similarly, Proteobacteria were more dominant in low- vs high-VR patients (P = 0.013). After multivariable regression analysis, we further observed lung microbiota diversity as a negative predictor of weaning from IMV and hospital survival (hazard ratio = 3.31; 95% confidence interval, 1.52-7.20, P = 0.048). C-ARDS patients with low Crs/low VR had a Proteobacteria-dominated lung microbiota. Whether patients with a more diverse lung bacterial community may have more chances to be weaned from IMV and discharged alive from the hospital warrants further large-scale investigations. IMPORTANCE: Lung microbiota characteristics were demonstrated to predict ventilator-free days and weaning from mechanical ventilation in patients with acute respiratory distress syndrome (ARDS). In this study, we observed that in severe coronavirus disease 2019 patients with ARDS who require invasive mechanical ventilation, lung microbiota characteristics were associated with respiratory mechanics. Specifically, the lung microbiota of patients with low respiratory system compliance and low ventilatory ratio was characterized by Proteobacteria dominance. Moreover, after multivariable regression analysis, we also found an association between patients' microbiota diversity and a higher possibility of being weaned from mechanical ventilation and discharged alive from the hospital. For these reasons, lung microbiota characterization may help to stratify patient characteristics and orient the delivery of target interventions. (This study has been registered at ClinicalTrials.gov on 17 February 2020 under identifier NCT04271345.).Registered at ClinicalTrials.gov, 17 February 2020 (NCT0427135).


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/therapy , RNA, Ribosomal, 16S/genetics , Lung , Respiratory Distress Syndrome/therapy , Respiratory Mechanics
8.
Crit Care Explor ; 6(2): e1039, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38343444

ABSTRACT

OBJECTIVES: In patients with COVID-19 respiratory failure, controlled mechanical ventilation (CMV) is often necessary during the acute phases of the disease. Weaning from CMV to pressure support ventilation (PSV) is a key objective when the patient's respiratory functions improve. Limited evidence exists regarding the factors predicting a successful transition to PSV and its impact on patient outcomes. DESIGN: Retrospective observational cohort study. SETTING: Twenty-four Italian ICUs from February 2020 to May 2020. PATIENTS: Mechanically ventilated ICU patients with COVID-19-induced respiratory failure. INTERVENTION: The transition period from CMV to PSV was evaluated. We defined it as "failure of assisted breathing" if the patient returned to CMV within the first 72 hours. MEASUREMENTS AND MAIN RESULTS: Of 1260 ICU patients screened, 514 were included. Three hundred fifty-seven patients successfully made the transition to PSV, while 157 failed. Pao2/Fio2 ratio before the transition emerged as an independent predictor of a successful shift (odds ratio 1.00; 95% CI, 0.99-1.00; p = 0.003). Patients in the success group displayed a better trend in Pao2/Fio2, Paco2, plateau and peak pressure, and pH level. Subjects in the failure group exhibited higher ICU mortality (hazard ratio 2.08; 95% CI, 1.42-3.06; p < 0.001), an extended ICU length of stay (successful vs. failure 21 ± 14 vs. 27 ± 17 d; p < 0.001) and a longer duration of mechanical ventilation (19 ± 18 vs. 24 ± 17 d, p = 0.04). CONCLUSIONS: Our study emphasizes that the Pao2/Fio2 ratio was the sole independent factor associated with a failed transition from CMV to PSV. The unsuccessful transition was associated with worse outcomes.

9.
Article in English | MEDLINE | ID: mdl-38414273

ABSTRACT

BACKGROUND: Myocardial injury is prevalent among patients hospitalized for COVID-19. However, the role of COVID-19 vaccines in modifying the risk of myocardial injury is unknown. OBJECTIVES: To assess the role of vaccines in modifying the risk of myocardial injury in COVID-19. METHODS: We enrolled COVID-19 patients admitted from March 2021 to February 2022 with known vaccination status and ≥1 assessment of hs-cTnI within 30 days from the admission. The primary endpoint was the occurrence of myocardial injury (hs-cTnI levels >99th percentile upper reference limit). RESULTS: 1019 patients were included (mean age 67.7±14.8 years, 60.8% male, 34.5% vaccinated against COVID-19). Myocardial injury occurred in 145 (14.2%) patients. At multivariate logistic regression analysis, advanced age, chronic kidney disease and hypertension, but not vaccination status, were independent predictors of myocardial injury. In the analysis according to age tertiles distribution, myocardial injury occurred more frequently in the III tertile (≥76 years) compared to other tertiles (I tertile:≤60 years;II tertile:61-75 years) (p<0.001). Moreover, in the III tertile, vaccination was protective against myocardial injury (OR 0.57, CI 95% 0.34-0.94; p=0.03), while a previous history of coronary artery disease was an independent positive predictor. In contrast, in the I tertile, chronic kidney disease (OR 6.94, 95% CI 1.31-36.79, p=0.02) and vaccination (OR 4.44, 95% CI 1.28-15.34, p=0.02) were independent positive predictors of myocardial injury. CONCLUSIONS: In patients ≥76 years, COVID-19 vaccines were protective for the occurrence of myocardial injury, while in patients ≤60 years, myocardial injury was associated with previous COVID-19 vaccination. Further studies are warranted to clarify the underlying mechanisms.

10.
J Anesth Analg Crit Care ; 4(1): 4, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263252

ABSTRACT

Severe infections frequently require admission to the intensive care unit and cause life-threatening complications in critically ill patients. In this setting, severe infections are acknowledged as prerequisites for the development of sepsis, whose pathophysiology implies a dysregulated host response to pathogens, leading to disability and mortality worldwide.Vitamin D is a secosteroid hormone that plays a pivotal role to maintain immune system homeostasis, which is of paramount importance to resolve infection and modulate the burden of sepsis. Specifically, vitamin D deficiency has been widely reported in critically ill patients and represents a risk factor for the development of severe infections, sepsis and worse clinical outcomes. Several studies have demonstrated the feasibility, safety and effectiveness of vitamin D supplementation strategies to improve vitamin D body content, but conflictual results support its benefit in general populations of critically ill patients. In contrast, small randomised clinical trials reported that vitamin D supplementation may improve host-defence to pathogen invasion via the production of cathelicidin and specific cytokines. Nonetheless, no large scale investigations have been designed to specifically assess the impact of vitamin D supplementation on the outcome of critically ill septic patients admitted to the intensive care unit.

11.
Chest ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38295949

ABSTRACT

BACKGROUND: Positive end-expiratory pressure (PEEP) can potentially modulate inspiratory effort (ΔPes), which is the major determinant of self-inflicted lung injury. RESEARCH QUESTION: Does high PEEP reduce ΔPes in patients with moderate-to-severe ARDS on assisted ventilation? STUDY DESIGN AND METHODS: Sixteen patients with Pao2/Fio2 ≤ 200 mm Hg and ΔPes ≥ 10 cm H2O underwent a randomized sequence of four ventilator settings: PEEP = 5 cm H2O or PEEP = 15 cm H2O + synchronous (pressure support ventilation [PSV]) or asynchronous (pressure-controlled intermittent mandatory ventilation [PC-IMV]) inspiratory assistance. ΔPes and respiratory system, lung, and chest wall mechanics were assessed with esophageal manometry and occlusions. PEEP-induced alveolar recruitment and overinflation, lung dynamic strain, and tidal volume distribution were assessed with electrical impedance tomography. RESULTS: ΔPes was not systematically different at high vs low PEEP (pressure support ventilation: median, 20 cm H2O; interquartile range (IQR), 15-24 cm H2O vs median, 15 cm H2O; IQR, 13-23 cm H2O; P = .24; pressure-controlled intermittent mandatory ventilation: median, 20; IQR, 18-23 vs median, 19; IQR, 17-25; P = .67, respectively). Similarly, respiratory system and transpulmonary driving pressures, tidal volume, lung/chest wall mechanics, and pendelluft extent were not different between study phases. High PEEP resulted in lower or higher ΔPes, respiratory system driving pressure, and transpulmonary driving pressure according to whether this increased or decreased respiratory system compliance (r = -0.85, P < .001; r = -0.75, P < .001; r = -0.80, P < .001, respectively). PEEP-induced changes in respiratory system compliance were driven by its lung component and were dependent on the extent of PEEP-induced alveolar overinflation (r = -0.66, P = .006). High PEEP caused variable recruitment and systematic redistribution of tidal volume toward dorsal lung regions, thereby reducing dynamic strain in ventral areas (pressure support ventilation: median, 0.49; IQR, 0.37-0.83 vs median, 0.96; IQR, 0.62-1.56; P = .003; pressure-controlled intermittent mandatory ventilation: median, 0.65; IQR, 0.42-1.31 vs median, 1.14; IQR, 0.79-1.52; P = .002). All results were consistent during synchronous and asynchronous inspiratory assistance. INTERPRETATION: The impact of high PEEP on ΔPes and lung stress is interindividually variable according to different effects on the respiratory system and lung compliance resulting from alveolar overinflation. High PEEP may help mitigate the risk of self-inflicted lung injury solely if it increases lung/respiratory system compliance. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT04241874; URL: www. CLINICALTRIALS: gov.

16.
J Anesth Analg Crit Care ; 3(1): 47, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957713

ABSTRACT

BACKGROUND: COVID-19 vaccination has been proved to be effective in preventing hospitalization and illness progression, even though data on mortality of vaccinated patients in the intensive care unit (ICU) are conflicting. The aim of this study was to investigate the characteristics of vaccinated patients admitted to ICU according to their immunization cycle and to outline the risk factors for 28-day mortality. This observational study included adult patients admitted to ICU for acute respiratory failure (ARF) due to SARS-CoV-2 and who had received at least one dose of vaccine. RESULTS: Fully vaccination was defined as a complete primary cycle from < 120 days or a booster dose from > 14 days. All the other patients were named partially vaccinated. One-hundred sixty patients (91 fully and 69 partially vaccinated) resulted eligible, showing a 28-day mortality rate of 51.9%. Compared to partially vaccinated, fully vaccinated were younger (69 [60-77.5] vs. 74 [66-79] years, p 0.029), more frequently immunocompromised (39.56% vs. 14.39%, p 0.003), and affected by at least one comorbidity (90.11% vs 78.26%, p 0.045), mainly chronic kidney disease (CKD) (36.26% vs 20.29%, p 0.035). At multivariable analysis, independent predictors of 28-day mortality were as follows: older age [OR 1.05 (CI 95% 1.01-1.08), p 0.005], history of chronic obstructive pulmonary disease (COPD) [OR 3.05 (CI 95% 1.28-7.30), p 0.012], immunosuppression [OR 3.70 (CI 95% 1.63-8.40), p 0.002], and admission respiratory and hemodynamic status [PaO2/FiO2 and septic shock: OR 0.99 (CI 95% 0.98-0.99), p 0.009 and 2.74 (CI 95% 1.16-6.48), p 0.022, respectively]. CONCLUSIONS: Despite a full vaccination cycle, severe COVID-19 may occur in patients with relevant comorbidities, especially immunosuppression and CKD. Regardless the immunization status, predisposing conditions (i.e., older age, COPD, and immunosuppression) and a severe clinical presentation were predictors of 28-day mortality.

17.
Artif Organs ; 47(12): 1865-1873, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37737449

ABSTRACT

BACKGROUND: To explore the association between endotoxin activity (EA) and septic cardiomyopathy (SCM), the relationship between endotoxin removal by Polymyxin-B hemoperfusion (PMX-HP) and recovery from SCM (R-SCM), and the correlation between R-SCM and the 28-day mortality in septic patients admitted to the intensive care unit (ICU). METHODS: Observational study that included patients admitted to two ICUs of a tertiary university hospital between April 2011 and December 2019, who received PMX-HP for sepsis/septic shock. The SCM and R-SCM were assessed by transthoracic echocardiography. RESULTS: Among 148 patients, SCM was diagnosed in 60 (46%) of them and had no relationship with median EA (SCM group: 0.73; no-SCM group: 0.66, p = 0.48). Recovery from SCM was observed in 24 patients (49%) and was independently associated with the PMX-HP (OR 4.19, 95%CI [1.22, 14.3]; p = 0.02) and the SAPS2 II score (OR 0.94, 95%CI [0.9, 0.98]; p = 0.006). In the SCM group, the 28-day mortality was 60% and was independently predicted by R-SCM (OR 0.02, 95%CI [0.001, 0.3] p = 0.005) and SAPS II score (OR 1.11, 95%CI [1.01, 1.23] p = 0.037). CONCLUSIONS: In septic patients, EA was not associated with SCM. However, endotoxin removal by Polymyxin-B hemoperfusion was associated with recovery from cardiomyopathy, which was a predictor of lower 28-day mortality.


Subject(s)
Hemoperfusion , Sepsis , Shock, Septic , Humans , Polymyxin B/therapeutic use , Retrospective Studies , Critical Illness , Endotoxins , Anti-Bacterial Agents/therapeutic use , Sepsis/complications , Sepsis/therapy
18.
Br J Anaesth ; 131(4): 775-785, 2023 10.
Article in English | MEDLINE | ID: mdl-37543437

ABSTRACT

BACKGROUND: We aimed at determining whether a 2-h session of high-flow nasal oxygen (HFNO) immediately after extubation improves oxygen exchange after major gynaecological surgery in the Trendelenburg position in adult female patients. METHODS: In this single-centre, open-label, randomised trial, patients who underwent major gynaecological surgery were randomised to HFNO or conventional oxygen treatment with a Venturi mask. The primary outcome was the Pao2/FiO2 ratio after 2 h of treatment. Secondary outcomes included lung ultrasound score, diaphragm thickening fraction, dyspnoea, ventilatory frequency, Paco2, the percentage of patients with impaired gas exchange (Pao2/FiO2 ≤40 kPa) after 2 h of treatment, and postoperative pulmonary complications at 30 days. RESULTS: A total of 83 patients were included (42 in the HFNO group and 41 in the conventional treatment group). After 2 h of treatment, median (inter-quartile range) Pao2/FiO2 was 52.9 (47.9-65.2) kPa in the HFNO group and 45.7 (36.4 -55.9) kPa in the conventional treatment group (mean difference 8.7 kPa [95% CI: 3.4 to 13.9], P=0.003). The lung ultrasound score was lower in the HFNO group than in the conventional treatment group (9 [6-10] vs 12 [10-14], P<0.001), mostly because of the difference of the score in dorsal areas (7 [6-8] vs 10 [9-10], P<0.001). The percentage of patients with impaired gas exchange was lower in the HFNO group than in the conventional treatment group (5% vs 37%, P<0.001). All other secondary outcomes were not different between groups. CONCLUSIONS: In patients who underwent major gynaecological surgery, a pre-emptive 2-h session of HFNO after extubation improved postoperative oxygen exchange and reduced atelectasis compared with a conventional oxygen treatment strategy. CLINICAL TRIAL REGISTRATION: NCT04566419.


Subject(s)
Oxygen , Pulmonary Atelectasis , Adult , Humans , Female , Oxygen/therapeutic use , Lung , Respiration, Artificial , Postoperative Complications/prevention & control , Postoperative Complications/drug therapy , Gynecologic Surgical Procedures , Oxygen Inhalation Therapy
19.
Crit Care ; 27(1): 315, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592288

ABSTRACT

BACKGROUND: The effects of awake prone position on the breathing pattern of hypoxemic patients need to be better understood. We conducted a crossover trial to assess the physiological effects of awake prone position in patients with acute hypoxemic respiratory failure. METHODS: Fifteen patients with acute hypoxemic respiratory failure and PaO2/FiO2 < 200 mmHg underwent high-flow nasal oxygen for 1 h in supine position and 2 h in prone position, followed by a final 1-h supine phase. At the end of each study phase, the following parameters were measured: arterial blood gases, inspiratory effort (ΔPES), transpulmonary driving pressure (ΔPL), respiratory rate and esophageal pressure simplified pressure-time product per minute (sPTPES) by esophageal manometry, tidal volume (VT), end-expiratory lung impedance (EELI), lung compliance, airway resistance, time constant, dynamic strain (VT/EELI) and pendelluft extent through electrical impedance tomography. RESULTS: Compared to supine position, prone position increased PaO2/FiO2 (median [Interquartile range] 104 mmHg [76-129] vs. 74 [69-93], p < 0.001), reduced respiratory rate (24 breaths/min [22-26] vs. 27 [26-30], p = 0.05) and increased ΔPES (12 cmH2O [11-13] vs. 9 [8-12], p = 0.04) with similar sPTPES (131 [75-154] cmH2O s min-1 vs. 105 [81-129], p > 0.99) and ΔPL (9 [7-11] cmH2O vs. 8 [5-9], p = 0.17). Airway resistance and time constant were higher in prone vs. supine position (9 cmH2O s arbitrary units-3 [4-11] vs. 6 [4-9], p = 0.05; 0.53 s [0.32-61] vs. 0.40 [0.37-0.44], p = 0.03). Prone position increased EELI (3887 arbitrary units [3414-8547] vs. 1456 [959-2420], p = 0.002) and promoted VT distribution towards dorsal lung regions without affecting VT size and lung compliance: this generated lower dynamic strain (0.21 [0.16-0.24] vs. 0.38 [0.30-0.49], p = 0.004). The magnitude of pendelluft phenomenon was not different between study phases (55% [7-57] of VT in prone vs. 31% [14-55] in supine position, p > 0.99). CONCLUSIONS: Prone position improves oxygenation, increases EELI and promotes VT distribution towards dependent lung regions without affecting VT size, ΔPL, lung compliance and pendelluft magnitude. Prone position reduces respiratory rate and increases ΔPES because of positional increases in airway resistance and prolonged expiratory time. Because high ΔPES is the main mechanistic determinant of self-inflicted lung injury, caution may be needed in using awake prone position in patients exhibiting intense ΔPES. Clinical trail registeration: The study was registered on clinicaltrials.gov (NCT03095300) on March 29, 2017.


Subject(s)
Respiratory Insufficiency , Wakefulness , Humans , Prone Position , Respiration , Respiratory Insufficiency/therapy , Tidal Volume , Cross-Over Studies
20.
Heart Lung ; 62: 193-199, 2023.
Article in English | MEDLINE | ID: mdl-37562337

ABSTRACT

BACKGROUND: COVID-19 patients undergoing ECMO are at highly increased risk of nosocomial infections. OBJECTIVES: To study incidence, clinical outcomes and microbiological features of bloodstream infections (BSI) occurring during ECMO in COVID-19 patients. METHODS: Observational prospective cohort study enrolling consecutive COVID-19 patients undergoing veno-venous-ECMO in an Italian ICU from March 2020 to March 2022. RESULTS: In the study population of 68 patients (age 53 [49-60] years, 82% males), 30 (44%) developed bloodstream infections (BSI group) while 38 did not (N-BSI group) with an incidence of 32 events/1000 days of ECMO. In BSI group pre-ECMO respiratory support was shorter (6 [4-9] vs 9 [5-12] days, p = 0.02) and ECMO treatment was longer (18 [10-29] vs 11 [7-18] days, p = 0.03) than in N-BSI group. The overall ECMO and ICU mortality were 50% and 59%, respectively, without any inter-group difference (p = 1.00). A longer ECMO treatment was independently correlated with higher rate of BSI (p = 0.04, OR [95% CI] 1.06 [1.02-1.11]). Sixteen primary and 14 secondary infectious events were documented. Gram-positive pathogens were more common in primary than secondary BSI (88% vs 43%, p = 0.02) and Enterococcus faecalis (56%) was the most frequent one. Conversely, Gram-negative microorganisms were more often isolated in secondary rather than primary BSI (57% vs 13%, p = 0.02), with Acinetobacter baumannii (21%) and Pseudomonas aeruginosa (21%) as most represented species. The administration of Sars-CoV-2 antiviral drug showed independent correlation with a reduced rate of ICU mortality (p = 0.01, OR [95% CI] 0.22 [0.07-0.73]). CONCLUSIONS: Bloodstream infections represented a frequent complication without worsening clinical outcomes in our COVID-19 patients undergoing ECMO. Primary and secondary BSI events showed peculiar microbiological profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...