Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 21(21): 24753-69, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24150319

ABSTRACT

The technique of partially scanned interferograms is applied to the retrieval of trace gases from Infrared Atmospheric Sounding Interferometer (IASI) observations. For the specific case of CO, CO2, CH4 and N2O, we show that this methodology allows us to retrieve trace gases column abundances at an unprecedented accuracy at the level of the single IASI footprint. The technique consists in transforming the IASI spectra back to the interferogram domain where we identify small regions that are mostly sensitive to single gas species. The retrieval is then performed by directly applying Least Squares estimation to these small segments of interferometric radiances. One of the main advantages of the technique is that it allows the efficient use of the information contained in all the IASI channels that are available in the absorption bands of a specific gas species. The retrieval technique has been applied to IASI radiances measured over the Mediterranean sea during the month of July 2010, one of the hottest months on record. Results have been validated against ground-based measurements. We have also carried out a comparison with Atmospheric Infrared Radiometer Sounder data and IASI retrievals obtained with usual variational approaches in the spectral domain.


Subject(s)
Air Pollutants/analysis , Algorithms , Atmosphere/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Gases/analysis , Spectrum Analysis/methods , Information Storage and Retrieval/methods
2.
Appl Opt ; 50(22): 4516-28, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21833128

ABSTRACT

Correlation interferometry is a particular application of Fourier transform spectroscopy with partially scanned interferograms. Basically, it is a technique to obtain the difference between the spectra of atmospheric radiance at two diverse spectral resolutions. Although the technique could be exploited to design an appropriate correlation interferometer, in this paper we are concerned with the analytical aspects of the method and its application to high-spectral-resolution infrared observations in order to separate the emission of a given atmospheric gas from a spectral signal dominated by surface emission, such as in the case of satellite spectrometers operated in the nadir looking mode. The tool will be used to address some basic questions concerning the vertical spatial resolution of H2O and to develop an algorithm to retrieve the columnar amount of CO2. An application to complete interferograms from the Infrared Atmospheric Sounding Interferometer will be presented and discussed. For H2O, we have concluded that the vertical spatial resolution in the lower troposphere mostly depends on broad features associated with the spectrum, whereas for CO2, we have derived a technique capable of retrieving a CO2 columnar amount with accuracy of ≈±7 parts per million by volume at the level of each single field of view.

3.
Appl Opt ; 47(21): 3909-19, 2008 Jul 20.
Article in English | MEDLINE | ID: mdl-18641761

ABSTRACT

We evaluate the spectral quality, radiometric noise, and retrieval performance of a Fourier transform infrared spectrometer, which has been developed for recording spectrally resolved observations in a region of the spectrum which is important both for the science of Earth's climate and applications, such as the remote sensing of temperature and atmospheric gas species. This spectral region extends from 100 to 1600 cm(-1) and encompasses the two fundamental, rotation and vibration, absorption bands of water vapor. The instrument is a customized version of a Bomem AERI (Atmospheric Emitted Radiance Interferometer) spectrometer, whose spectral coverage has been extended in the far infrared with the use of uncooled pyroelectric detectors. Retrieval examples for water vapor and temperature profiles are shown, which also allow us to intercompare the retrieval performance of both H(2)O vibration and rotation bands.

SELECTION OF CITATIONS
SEARCH DETAIL
...