Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
eNeuro ; 11(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38164560

ABSTRACT

Our previous studies find that subcutaneously administered (s.c.) subanesthetic ketamine promotes sustained cortical disinhibition and plasticity in adult mouse binocular visual cortex (bV1). We hypothesized that intranasal delivery (i.n.) of subanesthetic ketamine may have similar actions. To test this, we delivered ketamine (10 mg/kg, i.n.) to adult mice and then recorded excitatory pyramidal neurons or PV+ interneurons in L2/3 of bV1 slices. In pyramidal neurons the baseline IPSC amplitudes from mice treated with ketamine are significantly weaker than those in control mice. Acute bath application of neuregulin-1 (NRG1) to cortical slices increases these IPSC amplitudes in mice treated with ketamine but not in controls. In PV+ interneurons, the baseline EPSC amplitudes from mice treated with ketamine are significantly weaker than those in control mice. Acute bath application of NRG1 to cortical slices increases these EPSC amplitudes in mice treated with ketamine but not in controls. We also found that mice treated with ketamine exhibit increased pCREB staining in L2/3 of bV1. Together, our results show that a single intranasal delivery of ketamine reduces PV+ interneuron excitation and reduces pyramidal neuron inhibition and that these effects are acutely reversed by NRG1. These results are significant as they show that intranasal delivery of ketamine induces cortical disinhibition, which has implications for the treatment of psychiatric, neurologic, and ophthalmic disorders.


Subject(s)
Ketamine , Mice , Animals , Ketamine/pharmacology , Pyramidal Cells/physiology , Interneurons , Neuronal Plasticity/physiology , Parvalbumins/pharmacology
4.
Mol Psychiatry ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443194

ABSTRACT

Inhibitory interneurons are crucial to brain function and their dysfunction is implicated in neuropsychiatric conditions. Emerging evidence indicates that cholecystokinin (CCK)-expressing interneurons (CCK+) are highly heterogenous. We find that a large subset of parvalbumin-expressing (PV+) interneurons express CCK strongly; between 40 and 56% of PV+ interneurons in mouse hippocampal CA1 express CCK. Primate interneurons also exhibit substantial PV/CCK co-expression. Mouse PV+/CCK+ and PV+/CCK- cells show distinguishable electrophysiological and molecular characteristics. Analysis of single nuclei RNA-seq and ATAC-seq data shows that PV+/CCK+ cells are a subset of PV+ cells, not of synuclein gamma positive (SNCG+) cells, and that they strongly express oxidative phosphorylation (OXPHOS) genes. We find that mitochondrial complex I and IV-associated OXPHOS gene expression is strongly correlated with CCK expression in PV+ interneurons at both the transcriptomic and protein levels. Both PV+ interneurons and dysregulation of OXPHOS processes are implicated in neuropsychiatric conditions, including autism spectrum (ASD) disorder and schizophrenia (SCZ). Analysis of human brain samples from patients with these conditions shows alterations in OXPHOS gene expression. Together these data reveal important molecular characteristics of PV-CCK co-expressing interneurons and support their implication in neuropsychiatric conditions.

6.
Mol Psychiatry ; 28(10): 4407-4420, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36959497

ABSTRACT

The study of Alzheimer's Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.


Subject(s)
Alzheimer Disease , Cognition Disorders , Animals , Humans , Alzheimer Disease/pathology , Learning , Cognition , Neurons/pathology
9.
J Neurosci ; 42(45): 8439-8449, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351821

ABSTRACT

Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.


Subject(s)
Hallucinogens , Neurosciences , Humans , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Brain , Neuronal Plasticity
10.
Cell Rep Methods ; 2(5): 100207, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35637911

ABSTRACT

In vivo calcium imaging enables simultaneous recording of large neuronal ensembles engaged in complex operations. Many experiments require monitoring and identification of cell populations across multiple sessions. Population cell tracking across multiple sessions is complicated by non-rigid transformations induced by cell movement and imaging field shifts. We introduce SCOUT (Single-Cell spatiOtemporal longitUdinal Tracking), a fast, robust cell-tracking method utilizing multiple cell-cell similarity metrics, probabilistic inference, and an adaptive clustering methodology, to perform cell identification across multiple sessions. By comparing SCOUT with earlier cell-tracking algorithms on simulated, 1-photon, and 2-photon recordings, we show that our approach significantly improves cell-tracking quality, particularly when recordings exhibit spatial footprint movement between sessions or sub-optimal neural extraction quality.


Subject(s)
Calcium, Dietary , Neurons , Neurons/physiology , Algorithms , Movement
11.
Neuron ; 110(1): 21-35, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34784504

ABSTRACT

In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings.


Subject(s)
Neurosciences , Research Design , Analysis of Variance , Linear Models , Models, Statistical , Reproducibility of Results
12.
Neuropsychopharmacology ; 46(11): 2011-2020, 2021 10.
Article in English | MEDLINE | ID: mdl-33658654

ABSTRACT

Patients with SCN8A epileptic encephalopathy exhibit a range of clinical features, including multiple seizure types, movement disorders, and behavioral abnormalities, such as developmental delay, mild-to-severe intellectual disability, and autism. Recently, the de novo heterozygous SCN8A R1620L mutation was identified in an individual with autism, intellectual disability, and behavioral seizures without accompanying electrographic seizure activity. To date, the effects of SCN8A mutations that are primarily associated with behavioral abnormalities have not been studied in a mouse model. To better understand the phenotypic and functional consequences of the R1620L mutation, we used CRISPR/Cas9 technology to generate mice expressing the corresponding SCN8A amino acid substitution. Homozygous mutants exhibit tremors and a maximum lifespan of 22 days, while heterozygous mutants (RL/+) exhibit autistic-like behaviors, such as hyperactivity and learning and social deficits, increased seizure susceptibility, and spontaneous seizures. Current clamp analyses revealed a reduced threshold for firing action potentials in heterozygous CA3 pyramidal neurons and reduced firing frequency, suggesting that the R1620L mutation has both gain- and loss-of-function effects. In vivo calcium imaging using miniscopes in freely moving RL/+ mutants showed hyperexcitability of cortical excitatory neurons that is likely to increase seizure susceptibility. Finally, we found that oxcarbazepine and Huperzine A, a sodium channel blocker and reversible acetylcholinesterase inhibitor, respectively, were capable of conferring robust protection against induced seizures in RL/+ mutants. This mouse line will provide the opportunity to better understand the range of clinical phenotypes associated with SCN8A mutations and to develop new therapeutic approaches.


Subject(s)
Autistic Disorder , Epilepsy , Animals , Humans , Mice , Mutation/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurons , Seizures/genetics
13.
Transl Psychiatry ; 11(1): 144, 2021 02 24.
Article in English | MEDLINE | ID: mdl-33627623

ABSTRACT

Subanesthetic ketamine evokes rapid antidepressant effects in human patients that persist long past ketamine's chemical half-life of ~2 h. Ketamine's sustained antidepressant action may be due to modulation of cortical plasticity. We find that ketamine ameliorates depression-like behavior in the forced swim test in adult mice, and this depends on parvalbumin-expressing (PV) neuron-directed neuregulin-1 (NRG1)/ErbB4 signaling. Ketamine rapidly downregulates NRG1 expression in PV inhibitory neurons in mouse medial prefrontal cortex (mPFC) following a single low-dose ketamine treatment. This NRG1 downregulation in PV neurons co-tracks with the decreases in synaptic inhibition to mPFC excitatory neurons for up to a week. This results from reduced synaptic excitation to PV neurons, and is blocked by exogenous NRG1 as well as by PV targeted ErbB4 receptor knockout. Thus, we conceptualize that ketamine's effects are mediated through rapid and sustained cortical disinhibition via PV-specific NRG1 signaling. Our findings reveal a novel neural plasticity-based mechanism for ketamine's acute and long-lasting antidepressant effects.


Subject(s)
Ketamine , Animals , Antidepressive Agents/pharmacology , Humans , Ketamine/pharmacology , Mice , Neuregulin-1 , Neuronal Plasticity , Parvalbumins , Receptor, ErbB-4
14.
Neurosci Bull ; 37(5): 701-719, 2021 May.
Article in English | MEDLINE | ID: mdl-33367996

ABSTRACT

Anterograde viral tracers are powerful and essential tools for dissecting the output targets of a brain region of interest. They have been developed from herpes simplex virus 1 (HSV-1) strain H129 (H129), and have been successfully applied to map diverse neural circuits. Initially, the anterograde polysynaptic tracer H129-G4 was used by many groups. We then developed the first monosynaptic tracer, H129-dTK-tdT, which was highly successful, yet improvements are needed. Now, by inserting another tdTomato expression cassette into the H129-dTK-tdT genome, we have created H129-dTK-T2, an updated version of H129-dTK-tdT that has improved labeling intensity. To help scientists produce and apply our H129-derived viral tracers, here we provide the protocol describing our detailed and standardized procedures. Commonly-encountered technical problems and their solutions are also discussed in detail. Broadly, the dissemination of this protocol will greatly support scientists to apply these viral tracers on a large scale.


Subject(s)
Herpesvirus 1, Human , Brain , Neurons
15.
Curr Biol ; 30(18): 3591-3603.e8, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32822611

ABSTRACT

Subanesthetic ketamine evokes rapid and long-lasting antidepressant effects in human patients. The mechanism for ketamine's effects remains elusive, but ketamine may broadly modulate brain plasticity processes. We show that single-dose ketamine reactivates adult mouse visual cortical plasticity and promotes functional recovery of visual acuity defects from amblyopia. Ketamine specifically induces downregulation of neuregulin-1 (NRG1) expression in parvalbumin-expressing (PV) inhibitory neurons in mouse visual cortex. NRG1 downregulation in PV neurons co-tracks both the fast onset and sustained decreases in synaptic inhibition to excitatory neurons, along with reduced synaptic excitation to PV neurons in vitro and in vivo following a single ketamine treatment. These effects are blocked by exogenous NRG1 as well as PV targeted receptor knockout. Thus, ketamine reactivation of adult visual cortical plasticity is mediated through rapid and sustained cortical disinhibition via downregulation of PV-specific NRG1 signaling. Our findings reveal the neural plasticity-based mechanism for ketamine-mediated functional recovery from adult amblyopia.


Subject(s)
Amblyopia/drug therapy , Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Neuregulin-1/metabolism , Neuronal Plasticity/drug effects , Parvalbumins/metabolism , Visual Cortex/drug effects , Amblyopia/metabolism , Amblyopia/pathology , Animals , Female , Male , Mice , Neuregulin-1/genetics , Neurons/drug effects , Neurons/pathology , Synapses/drug effects , Synapses/pathology , Visual Cortex/pathology
16.
J Comp Neurol ; 528(3): 419-432, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31454079

ABSTRACT

Neuregulins (NRGs) are protein ligands that impact neural development and circuit function. NRGs signal through the ErbB receptor tyrosine kinase family. NRG1/ErbB4 signaling in parvalbumin-expressing (PV) inhibitory interneurons is critical for visual cortical plasticity. There are multiple types of NRGs and ErbBs that can potentially contribute to visual cortical plasticity at different developmental stages. Thus, it is important to understand the normal developmental expression profiles of NRGs and ErbBs in specific neuron types in the visual cortex, and to study whether and how their expression changes in PV inhibitory neurons and excitatory neurons track with sensory perturbation. Cell type-specific translating ribosome affinity purification and qPCR was used to compare mRNA expression of nrg1,2,3,4 and erbB1,2,3,4 in PV and excitatory neurons in mouse visual cortex. We show that the expression of nrg1 and nrg3 decreases in PV neurons at the critical period peak, postnatal day 28 (P28) after monocular deprivation and dark rearing, and in the adult cortex (at P104) after 2-week long dark exposure. In contrast, nrg1 expression by excitatory neurons is unchanged at P28 and P104 following sensory deprivation, whereas nrg3 expression by excitatory neurons shows changes depending on the age and the mode of sensory deprivation. ErbB4 expression in PV neurons remains consistently high and does not appear to change in response to sensory deprivation. These data provide new important details of cell type-specific NRG/ErbB expression in the visual cortex and support that NRG1/ErbB4 signaling is implicated in both critical period and adult visual cortical plasticity.


Subject(s)
Interneurons/metabolism , Neuregulin-1/biosynthesis , Receptor, ErbB-4/biosynthesis , Visual Cortex/growth & development , Visual Cortex/metabolism , Age Factors , Animals , Gene Expression , Mice , Mice, Transgenic , Neuregulin-1/genetics , Receptor, ErbB-4/genetics , Sensory Deprivation/physiology
17.
eNeuro ; 6(2)2019.
Article in English | MEDLINE | ID: mdl-30937358

ABSTRACT

Hilar mossy cells in the dentate gyrus (DG) shape the firing and function of the hippocampal circuit. However, the neural circuitry providing afferent input to mossy cells is incompletely understood, and little is known about the development of these inputs. Thus, we used whole-cell recording and laser scanning photostimulation (LSPS) to characterize the developmental trajectory of local excitatory and inhibitory synaptic inputs to mossy cells in the mouse hippocampus. Hilar mossy cells were targeted by visualizing non-red fluorescent cells in the dentate hilus of GAD2-Cre; Ai9 mice that expressed tdTomato in GAD+ neurons, and were confirmed by post hoc morphological characterization. Our results show that at postnatal day (P)6-P7, mossy cells received more excitatory input from neurons in the proximal CA3 versus those in the DG. In contrast, at P13-P14 and P21-P28, the largest source of excitatory input originated in DG cells, while the strength of CA3 and hilar inputs declined. A developmental trend was also evident for inhibitory inputs. Overall inhibitory input at P6-P7 was weak, while inhibitory inputs from the DG cell layer and the hilus predominated at P13-P14 and P21-P28. The strength of local DG excitation and inhibition to mossy cells peaked at P13-P14 and decreased slightly in older P21-P28 mice. Together, these data provide new detailed information on the development of local synaptic connectivity of mossy cells, and suggests mechanisms through which developmental changes in local circuit inputs to hilar mossy cells shape their physiology and vulnerability to injury during postnatal periods.


Subject(s)
Mossy Fibers, Hippocampal/physiology , Mossy Fibers, Hippocampal/ultrastructure , Neural Pathways/physiology , Neural Pathways/ultrastructure , Neurogenesis/physiology , Animals , Female , Male , Mice , Synapses/physiology , Synapses/ultrastructure , Synaptic Transmission/physiology
18.
J Comp Neurol ; 527(3): 668-678, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29464684

ABSTRACT

Experience-dependent critical period (CP) plasticity has been extensively studied in the visual cortex. Monocular deprivation during the CP affects ocular dominance, limits visual performance, and contributes to the pathological etiology of amblyopia. Neuregulin-1 (NRG1) signaling through its tyrosine kinase receptor ErbB4 is essential for the normal development of the nervous system and has been linked to neuropsychiatric disorders such as schizophrenia. We discovered recently that NRG1/ErbB4 signaling in PV neurons is critical for the initiation of CP visual cortical plasticity by controlling excitatory synaptic inputs onto PV neurons and thus PV-cell mediated cortical inhibition that occurs following visual deprivation. Building on this discovery, we review the existing literature of neuregulin signaling in developing and adult cortex and address the implication of NRG/ErbB4 signaling in visual cortical plasticity at the cellular and circuit levels. NRG-directed research may lead to therapeutic approaches to reactivate plasticity in the adult cortex.


Subject(s)
Nerve Net/metabolism , Neuregulin-1/metabolism , Neuronal Plasticity/physiology , Visual Cortex/metabolism , Animals , Critical Period, Psychological , Humans , Signal Transduction/physiology
19.
eNeuro ; 4(2)2017.
Article in English | MEDLINE | ID: mdl-28451637

ABSTRACT

Hilar mossy cells are the prominent glutamatergic cell type in the dentate hilus of the dentate gyrus (DG); they have been proposed to have critical roles in the DG network. To better understand how mossy cells contribute to DG function, we have applied new viral genetic and functional circuit mapping approaches to quantitatively map and compare local and long-range circuit connections of mossy cells and dentate granule cells in the mouse. The great majority of inputs to mossy cells consist of two parallel inputs from within the DG: an excitatory input pathway from dentate granule cells and an inhibitory input pathway from local DG inhibitory neurons. Mossy cells also receive a moderate degree of excitatory and inhibitory CA3 input from proximal CA3 subfields. Long range inputs to mossy cells are numerically sparse, and they are only identified readily from the medial septum and the septofimbrial nucleus. In comparison, dentate granule cells receive most of their inputs from the entorhinal cortex. The granule cells receive significant synaptic inputs from the hilus and the medial septum, and they also receive direct inputs from both distal and proximal CA3 subfields, which has been underdescribed in the existing literature. Our slice-based physiological mapping studies further supported the identified circuit connections of mossy cells and granule cells. Together, our data suggest that hilar mossy cells are major local circuit integrators and they exert modulation of the activity of dentate granule cells as well as the CA3 region through "back-projection" pathways.


Subject(s)
Hippocampus/cytology , Mossy Fibers, Hippocampal/anatomy & histology , Action Potentials , Animals , Cholinergic Neurons/cytology , Female , GABAergic Neurons/cytology , Hippocampus/physiology , Male , Mice, Inbred C57BL , Mossy Fibers, Hippocampal/physiology , Neural Inhibition , Neural Pathways/cytology , Neural Pathways/physiology , Neuroanatomical Tract-Tracing Techniques , Septal Nuclei/cytology , Synapses
20.
World J Biol Psychiatry ; 18(6): 445-456, 2017 09.
Article in English | MEDLINE | ID: mdl-27723376

ABSTRACT

OBJECTIVES: We examined mechanisms that contribute to the rapid antidepressant effect of ketamine in mice that is dependent on glycogen synthase kinase-3 (GSK3) inhibition. METHODS: We measured serotonergic (5HT)-2C-receptor (5HTR2C) cluster microRNA (miRNA) levels in mouse hippocampus after administering an antidepressant dose of ketamine (10 mg/kg) in wild-type and GSK3 knockin mice, after GSK3 inhibition with L803-mts, and in learned helpless mice. RESULTS: Ketamine up-regulated cluster miRNAs 448-3p, 764-5p, 1264-3p, 1298-5p and 1912-3p (2- to 11-fold). This up-regulation was abolished in GSK3 knockin mice that express mutant constitutively active GSK3. The GSK3 specific inhibitor L803-mts was antidepressant in the learned helplessness and novelty suppressed feeding depression-like behaviours and up-regulated the 5HTR2C miRNA cluster in mouse hippocampus. After administration of the learned helplessness paradigm mice were divided into cohorts that were resilient (non-depressed) or were susceptible (depressed) to learned helplessness. The resilient, but not depressed, mice displayed increased hippocampal levels of miRNAs 448-3p and 1264-3p. Administration of an antagonist to miRNA 448-3p diminished the antidepressant effect of ketamine in the learned helplessness paradigm, indicating that up-regulation of miRNA 448-3p provides an antidepressant action. CONCLUSIONS: These findings identify a new outcome of GSK3 inhibition by ketamine that may contribute to antidepressant effects.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Hippocampus/drug effects , Hippocampus/metabolism , Introns/drug effects , Ketamine/pharmacology , MicroRNAs/drug effects , Protein Kinase Inhibitors/pharmacology , Receptor, Serotonin, 5-HT2C/drug effects , Animals , Antidepressive Agents/administration & dosage , Depression/drug therapy , Disease Models, Animal , Helplessness, Learned , Ketamine/administration & dosage , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligopeptides/administration & dosage , Oligopeptides/pharmacology , Protein Kinase Inhibitors/administration & dosage , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...