Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 50(13): 2967-80, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17536795

ABSTRACT

There remains a high unmet medical need for a safe oral therapy for thrombotic disorders. The serine protease factor Xa (fXa), with its central role in the coagulation cascade, is among the more promising targets for anticoagulant therapy and has been the subject of intensive drug discovery efforts. Investigation of a hit from high-throughput screening identified a series of thiophene-substituted anthranilamides as potent nonamidine fXa inhibitors. Lead optimization by incorporation of hydrophilic groups led to the discovery of compounds with picomolar inhibitory potency and micromolar in vitro anticoagulant activity. Based on their high potency, selectivity, oral pharmacokinetics, and efficacy in a rat venous stasis model of thrombosis, compounds ZK 814048 (10b), ZK 810388 (13a), and ZK 813039 (17m) were advanced into development.


Subject(s)
Amides/chemical synthesis , Aminopyridines/chemical synthesis , Anticoagulants/chemical synthesis , Factor Xa Inhibitors , Thiophenes/chemical synthesis , ortho-Aminobenzoates/chemical synthesis , Amides/pharmacokinetics , Amides/pharmacology , Aminopyridines/pharmacokinetics , Aminopyridines/pharmacology , Animals , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Crystallography, X-Ray , Dogs , Humans , In Vitro Techniques , Male , Models, Molecular , Prothrombin Time , Rats , Rats, Wistar , Structure-Activity Relationship , Thiophenes/pharmacokinetics , Thiophenes/pharmacology , Venous Thrombosis/drug therapy , ortho-Aminobenzoates/pharmacokinetics , ortho-Aminobenzoates/pharmacology
2.
Bioorg Med Chem ; 15(5): 2127-46, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17227710

ABSTRACT

A series of thiophene-containing non-amidine factor Xa inhibitors is described. Simple methyl-substituted thiophene analogs were relatively weak inhibitors. However, introduction of hydrophilic substituents at C-4 or C-5 of the thiophene afforded inhibitors with low nanomolar potency. Optimization of the thiophene substituent at C-4 afforded subnanomolar inhibitors with improved in vitro anticoagulant activity. Incorporating basic amine substituents on the thiophene increased hydrophilicity and improved anticoagulant activity. The pharmacokinetic profile of one inhibitor was evaluated in dogs, and the X-ray crystal structure of this compound bound to factor Xa provides insight into the observed SAR for binding to factor Xa.


Subject(s)
Amides/pharmacology , Factor Xa Inhibitors , Serine Proteinase Inhibitors/pharmacology , Thiophenes/chemistry , Amides/chemistry , Animals , Crystallography, X-Ray , Dogs , Humans , Magnetic Resonance Spectroscopy , Male , Models, Molecular , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
3.
J Org Chem ; 71(4): 1513-22, 2006 Feb 17.
Article in English | MEDLINE | ID: mdl-16468800

ABSTRACT

The addition of allylic trichlorosilanes to benzaldehyde promoted by chiral phosphoramides to give the enantioenriched homoallylic alcohol has been investigated. In a survey of Lewis bases as activators for the addition of allyltrichlorosilane to benzaldehyde, phosphorus-based amides have been found to be the most effective promoters. To achieve asymmetric induction, chiral phosphoric triamides derived from chiral diamines have been developed and applied in the allylation reaction albeit with modest enantioselectivities. The addition of 2-butenylsilanes was highly diastereoselective, suggesting a closed, chair-like transition structure. A detailed mechanistic study has been carried out to probe into the origin of activation. From a combination of nonlinear effects and kinetics studies, the reaction was found to likely involve two phosphoramides in both the rate and stereochemistry determining steps. These studies provided the background for the development of highly selective and reactive catalysts.


Subject(s)
Aldehydes/chemistry , Amides/chemistry , Catalysis , Phosphoric Acids/chemistry , Silanes/chemistry , Benzaldehydes/chemistry , Crotonates , Kinetics , Phosphoramides , Phosphorus , Stereoisomerism
4.
Bioorg Med Chem Lett ; 13(19): 3361-5, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-12951126

ABSTRACT

Compound 1 was identified by high throughput screening as a novel PAI-1 inhibitor. Optimization of the B and C-segments of 1 resulted in a series of structurally simplified compounds with improved potency. The synthesis and SAR data of these compounds are presented here.


Subject(s)
Methanol/chemical synthesis , Methanol/pharmacology , Plasminogen Activator Inhibitor 1/metabolism , Animals , Drug Evaluation, Preclinical/methods , Rats
5.
Bioorg Med Chem Lett ; 13(3): 507-11, 2003 Feb 10.
Article in English | MEDLINE | ID: mdl-12565961

ABSTRACT

Compound 1 was identified by high throughput screening as a novel, potent, non-amidine factor Xa inhibitor with good selectivity against thrombin and trypsin. A series of modifications of the three aromatic groups of 1 was investigated. Substitution of chlorine or bromine for fluorine on the aniline ring led to the discovery of subnanomolar factor Xa inhibitors. Positions on the anthranilic acid ring that can accommodate further substitution were also identified.


Subject(s)
Factor Xa Inhibitors , Thiophenes/pharmacology , ortho-Aminobenzoates/pharmacology , Animals , Anticoagulants/chemical synthesis , Anticoagulants/pharmacology , Cattle , Heterocyclic Compounds/pharmacology , Humans , Indicators and Reagents , Kinetics , Prothrombin Time , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship , Thiophenes/chemistry , Thrombin/antagonists & inhibitors , Trypsin Inhibitors/chemical synthesis , Trypsin Inhibitors/pharmacology , ortho-Aminobenzoates/chemistry
6.
Bioorg Med Chem Lett ; 12(9): 1307-10, 2002 May 06.
Article in English | MEDLINE | ID: mdl-11965377

ABSTRACT

A novel potent and selective aminophenol scaffold for fXa inhibitors was developed from a previously reported benzimidazole-based naphthylamidine template. The aminophenol template is more synthetically accessible than the benzimidazole template, which simplified the introduction of carboxylic acid groups. Substitution of a propenyl-para-hydroxy-benzamidine group on the aminophenol template produced selective, sub-nanomolar fXa inhibitors. The potency of the inhibitors is partially explained with the aid of a trypsin complex crystal structure.


Subject(s)
Aminophenols/chemistry , Aminophenols/chemical synthesis , Factor Xa Inhibitors , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/chemical synthesis , X-Ray Diffraction
7.
Bioorg Med Chem Lett ; 12(9): 1311-4, 2002 May 06.
Article in English | MEDLINE | ID: mdl-11965378

ABSTRACT

Optimization of the benzimidazole-based fXa inhibitors for selectivity versus thrombin and trypsin was achieved by substitution on the benzimidazole ring and replacement of the naphthylamidine group. Substitution of a nitro group at the 4-position on the benzimidazole improves both potency against fXa and selectivity versus thrombin. Alternatively, replacement of the naphthylamidine with either a biphenylamidine or propenylbenzamidine not only improves fXa potency and selectivity versus thrombin, but selectivity versus trypsin as well.


Subject(s)
Benzimidazoles/chemistry , Factor Xa Inhibitors , Serine Proteinase Inhibitors/chemistry , Thrombin/metabolism , Trypsin/metabolism , Benzimidazoles/metabolism , Serine Proteinase Inhibitors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...