Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Am J Primatol ; : e23656, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873762

ABSTRACT

The gut microbiome is a plastic phenotype; gut microbial composition is highly variable across an individual host's lifetime and between host social groups, and this variation has consequences for host health. However, we do not yet fully understand how longitudinal microbial dynamics and their social drivers may be influenced by ecological stressors, such as habitat degradation. Answering these questions is difficult in most wild animal systems, as it requires long-term collections of matched host, microbiome, and environmental trait data. To test if temporal and social influences on microbiome composition differ by the history of human disturbance, we leveraged banked, desiccated fecal samples collected over 5 months in 2004 from two ecologically distinct populations of wild, red-bellied lemurs (Eulemur rubriventer) that are part of a long-term study system. We found that social group explained more variation in microbiome composition than host population membership did, and that temporal variation in common microbial taxa was similar between populations, despite differences in history of human disturbance. Furthermore, we found that social group membership and collection month were both more important than individual lemur identity. Taken together, our results suggest that synchronized environments use can lead to synchronized microbial dynamics over time, even between habitats of varying quality, and that desiccated samples could become a viable approach for studying primate gut microbiota. Our work opens the door for other projects to utilize historic biological sample data sets to answer novel temporal microbiome questions in an ecological context.

2.
Elife ; 122023 05 09.
Article in English | MEDLINE | ID: mdl-37158607

ABSTRACT

Ecological relationships between bacteria mediate the services that gut microbiomes provide to their hosts. Knowing the overall direction and strength of these relationships is essential to learn how ecology scales up to affect microbiome assembly, dynamics, and host health. However, whether bacterial relationships are generalizable across hosts or personalized to individual hosts is debated. Here, we apply a robust, multinomial logistic-normal modeling framework to extensive time series data (5534 samples from 56 baboon hosts over 13 years) to infer thousands of correlations in bacterial abundance in individual baboons and test the degree to which bacterial abundance correlations are 'universal'. We also compare these patterns to two human data sets. We find that, most bacterial correlations are weak, negative, and universal across hosts, such that shared correlation patterns dominate over host-specific correlations by almost twofold. Further, taxon pairs that had inconsistent correlation signs (either positive or negative) in different hosts always had weak correlations within hosts. From the host perspective, host pairs with the most similar bacterial correlation patterns also had similar microbiome taxonomic compositions and tended to be genetic relatives. Compared to humans, universality in baboons was similar to that in human infants, and stronger than one data set from human adults. Bacterial families that showed universal correlations in human infants were often universal in baboons. Together, our work contributes new tools for analyzing the universality of bacterial associations across hosts, with implications for microbiome personalization, community assembly, and stability, and for designing microbiome interventions to improve host health.


Communities of bacteria living in the guts of humans and other animals perform essential services for their hosts such as digesting food, degrading toxins, or fighting viruses and other bacteria that cause disease. These services emerge from so-called 'ecological' relationships between different species of bacteria. One species, for example, may break down a molecule in human food into another compound that is, in turn, digested by another species into a small molecule that the human gut can absorb and use. The bacteria involved in such a process may become more or less common together in their host. In other situations, some bacteria may have opposing roles to each other, meaning that if one species becomes more abundant it may reduce the level of the other. However, it is not known if relationships between different bacteria are consistent across hosts (i.e., universal) or unique to each host (personalized). In other words, if a pair of bacteria increase and decrease in abundance together in one host, do they do the same in other hosts? Microbes often swap genes with each other to gain new traits; as each host harbors a distinctive set of gut microbes, it may be possible for microbial relationships to change depending on the bacterial species present in a specific environment. To investigate, Roche et al. studied the bacteria in thousands of samples of feces collected from 56 baboons over a 13-year period. These samples came from a long-term research project in Amboseli, Kenya which has been studying a population of wild baboons continuously since 1971. Roche et al. measured the abundance of hundreds of gut bacteria in the feces to understand the relationships between pairs. This revealed that connections between species were largely universal rather than personalized to each baboon. Furthermore, the pairs of bacteria with the strongest positive or negative associations had the most consistent relationships across the baboons. Microbial relationships that have strong effects on the microbiome's composition might therefore be especially universal. Further analyses measuring gut bacteria in human babies also found that relationships between pairs of bacteria were largely universal. Hence, individual species of bacteria may fill similar ecological roles in each host across humans and other primates, and perhaps also in other mammals. These findings suggest that it may be possible to leverage the ecological relationships between bacteria to develop universal therapies for human diseases associated with gut bacteria, such as inflammatory bowel disease or Clostridium difficile infection.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Humans , Papio/genetics , Bacteria/genetics , RNA, Ribosomal, 16S/genetics
3.
Gut Microbes ; 15(1): 2178797, 2023.
Article in English | MEDLINE | ID: mdl-36794811

ABSTRACT

A key component of microbiome research is understanding the role of host genetic influence on gut microbial composition. However, it can be difficult to link host genetics with gut microbial composition because host genetic similarity and environmental similarity are often correlated. Longitudinal microbiome data can supplement our understanding of the relative role of genetic processes in the microbiome. These data can reveal environmentally contingent host genetic effects, both in terms of controlling for environmental differences and in comparing how genetic effects differ by environment. Here, we explore four research areas where longitudinal data could lend new insights into host genetic effects on the microbiome: microbial heritability, microbial plasticity, microbial stability, and host and microbiome population genetics. We conclude with a discussion of methodological considerations for future studies.


For humans and animals, host genes play a role in shaping the gut microbiome. However, measuring these effects is difficult because host genetic and environmental similarities are often correlated. For instance, relatives often live together and share similar diets and lifestyles­forces that can also change gut microbial communities. Watching the microbiome over time, through longitudinal sampling, can help solve this problem by breaking gene-environment correlations. Here, we review this idea and several other research areas where longitudinal data will be helpful for understanding host genetic effects on the microbiome. We believe this approach will shed new light on the evolution of host­microbe relationships and can inform new microbiome therapies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics
4.
Nat Ecol Evol ; 6(7): 955-964, 2022 07.
Article in English | MEDLINE | ID: mdl-35654895

ABSTRACT

Human gut microbial dynamics are highly individualized, making it challenging to link microbiota to health and to design universal microbiome therapies. This individuality is typically attributed to variation in host genetics, diets, environments and medications but it could also emerge from fundamental ecological forces that shape microbiota more generally. Here, we leverage extensive gut microbial time series from wild baboons-hosts who experience little interindividual dietary and environmental heterogeneity-to test whether gut microbial dynamics are synchronized across hosts or largely idiosyncratic. Despite their shared lifestyles, baboon microbiota were only weakly synchronized. The strongest synchrony occurred among baboons living in the same social group, probably because group members range over the same habitat and simultaneously encounter the same sources of food and water. However, this synchrony was modest compared to each host's personalized dynamics. In support, host-specific factors, especially host identity, explained, on average, more than three times the deviance in longitudinal dynamics compared to factors shared with social group members and ten times the deviance of factors shared across the host population. These results contribute to mounting evidence that highly idiosyncratic gut microbiomes are not an artefact of modern human environments and that synchronizing forces in the gut microbiome (for example, shared environments, diets and microbial dispersal) are not strong enough to overwhelm key drivers of microbiome personalization, such as host genetics, priority effects, horizontal gene transfer and functional redundancy.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Diet , Gastrointestinal Microbiome/genetics , Humans , Papio
5.
mSystems ; 7(3): e0138021, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35499306

ABSTRACT

Despite playing a key role in the health of their hosts, host-associated microbial communities demonstrate considerable variation over time. These communities comprise thousands of temporally dynamic taxa, which makes visualizing microbial time series data challenging. As such, a method to visualize both the proportional and absolute change in the relative abundance of multiple taxa across multiple subjects over time is needed. To address this gap, we developed BiomeHorizon, the first automated, open-source R package that visualizes longitudinal compositional microbiome data using horizon plots. BiomeHorizon is available at https://github.com/blekhmanlab/biomehorizon/ and a guide with step-by-step instructions for using the package is provided at https://blekhmanlab.github.io/biomehorizon/. IMPORTANCE Host-associated microbiota (i.e., the number and types of bacteria in the body) can have profound impacts on an animal's day-to-day functioning as well as their long-term health. Recent work has shown that these microbial communities change substantially over time, so it is important to be able to link changes in the abundance of certain microbes with host health outcomes. However, visualizing such changes is difficult because the microbiome comprises thousands of different microbes. To address this issue, we developed BiomeHorizon, an R package for visualizing longitudinal microbiome data using horizon plots. BiomeHorizon accepts a range of data formats and was developed with two common microbiome study designs in mind: human health studies, where the microbiome is sampled at set time points, and observational wildlife studies, where samples may be collected at irregular time intervals. BiomeHorizon thus provides a flexible, user-friendly approach to microbiome time series data visualization and analysis.


Subject(s)
Microbiota , Animals , Humans , Time Factors , Bacteria , Research Design , Animals, Wild
6.
mSystems ; 7(1): e0124021, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35089060

ABSTRACT

Social and political policy, human activities, and environmental change affect the ways in which microbial communities assemble and interact with people. These factors determine how different social groups are exposed to beneficial and/or harmful microorganisms, meaning microbial exposure has an important socioecological justice context. Therefore, greater consideration of microbial exposure and social equity in research, planning, and policy is imperative. Here, we identify 20 research questions considered fundamentally important to promoting equitable exposure to beneficial microorganisms, along with safeguarding resilient societies and ecosystems. The 20 research questions we identified span seven broad themes, including the following: (i) sociocultural interactions; (ii) Indigenous community health and well-being; (iii) humans, urban ecosystems, and environmental processes; (iv) human psychology and mental health; (v) microbiomes and infectious diseases; (vi) human health and food security; and (vii) microbiome-related planning, policy, and outreach. Our goal was to summarize this growing field and to stimulate impactful research avenues while providing focus for funders and policymakers.


Subject(s)
Communicable Diseases , Microbiota , Humans , Policy , Social Justice , Public Health
7.
Science ; 373(6551): 181-186, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34244407

ABSTRACT

Relatives have more similar gut microbiomes than nonrelatives, but the degree to which this similarity results from shared genotypes versus shared environments has been controversial. Here, we leveraged 16,234 gut microbiome profiles, collected over 14 years from 585 wild baboons, to reveal that host genetic effects on the gut microbiome are nearly universal. Controlling for diet, age, and socioecological variation, 97% of microbiome phenotypes were significantly heritable, including several reported as heritable in humans. Heritability was typically low (mean = 0.068) but was systematically greater in the dry season, with low diet diversity, and in older hosts. We show that longitudinal profiles and large sample sizes are crucial to quantifying microbiome heritability, and indicate scope for selection on microbiome characteristics as a host phenotype.


Subject(s)
Bacteria/classification , Environment , Gastrointestinal Microbiome/genetics , Papio/microbiology , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/growth & development , Actinobacteria/isolation & purification , Aging , Animals , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/growth & development , Bacteroidetes/isolation & purification , Diet , Feces/microbiology , Female , Firmicutes/classification , Firmicutes/genetics , Firmicutes/growth & development , Firmicutes/isolation & purification , Genotype , Humans , Male , Papio/genetics , Phenotype , Seasons , Social Behavior
8.
mSystems ; 6(4): e0047121, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34313460

ABSTRACT

Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all.

9.
Proc Biol Sci ; 287(1934): 20201013, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32900310

ABSTRACT

Across group-living animals, linear dominance hierarchies lead to disparities in access to resources, health outcomes and reproductive performance. Studies of how dominance rank predicts these traits typically employ one of several dominance rank metrics without examining the assumptions each metric makes about its underlying competitive processes. Here, we compare the ability of two dominance rank metrics-simple ordinal rank and proportional or 'standardized' rank-to predict 20 traits in a wild baboon population in Amboseli, Kenya. We propose that simple ordinal rank best predicts traits when competition is density-dependent, whereas proportional rank best predicts traits when competition is density-independent. We found that for 75% of traits (15/20), one rank metric performed better than the other. Strikingly, all male traits were best predicted by simple ordinal rank, whereas female traits were evenly split between proportional and simple ordinal rank. Hence, male and female traits are shaped by different competitive processes: males are largely driven by density-dependent resource access (e.g. access to oestrous females), whereas females are shaped by both density-independent (e.g. distributed food resources) and density-dependent resource access. This method of comparing how different rank metrics predict traits can be used to distinguish between different competitive processes operating in animal societies.


Subject(s)
Papio/physiology , Social Behavior , Social Dominance , Animals , Female , Kenya , Male
10.
Philos Trans R Soc Lond B Biol Sci ; 375(1808): 20190598, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32772669

ABSTRACT

Recent comparative studies have found evidence consistent with the action of natural selection on gene regulation across primate species. Other recent work has shown that the microbiome can regulate host gene expression in a wide range of relevant tissues, leading to downstream effects on immunity, metabolism and other biological systems in the host. In primates, even closely related host species can have large differences in microbiome composition. One potential consequence of these differences is that host species-specific microbial traits could lead to differences in gene expression that influence primate physiology and adaptation to local environments. Here, we will discuss and integrate recent findings from primate comparative genomics and microbiome research, and explore the notion that the microbiome can influence host evolutionary dynamics by affecting gene regulation across primate host species. This article is part of the theme issue 'The role of the microbiome in host evolution'.


Subject(s)
Biological Evolution , Gene Expression Regulation , Genome , Microbiota , Primates/genetics , Primates/microbiology , Animals , Genomics , Host Microbial Interactions
11.
PLoS Biol ; 17(6): e3000333, 2019 06.
Article in English | MEDLINE | ID: mdl-31220077

ABSTRACT

Developing new software tools for analysis of large-scale biological data is a key component of advancing modern biomedical research. Scientific reproduction of published findings requires running computational tools on data generated by such studies, yet little attention is presently allocated to the installability and archival stability of computational software tools. Scientific journals require data and code sharing, but none currently require authors to guarantee the continuing functionality of newly published tools. We have estimated the archival stability of computational biology software tools by performing an empirical analysis of the internet presence for 36,702 omics software resources published from 2005 to 2017. We found that almost 28% of all resources are currently not accessible through uniform resource locators (URLs) published in the paper they first appeared in. Among the 98 software tools selected for our installability test, 51% were deemed "easy to install," and 28% of the tools failed to be installed at all because of problems in the implementation. Moreover, for papers introducing new software, we found that the number of citations significantly increased when authors provided an easy installation process. We propose for incorporation into journal policy several practical solutions for increasing the widespread installability and archival stability of published bioinformatics software.


Subject(s)
Computational Biology/methods , Information Dissemination/methods , Information Storage and Retrieval/methods , Biomedical Research , Databases, Factual , Humans , Internet , Software/trends
12.
Am J Primatol ; 81(10-11): e22970, 2019 10.
Article in English | MEDLINE | ID: mdl-30941803

ABSTRACT

To date, most insights into the processes shaping vertebrate gut microbiomes have emerged from studies with cross-sectional designs. While this approach has been valuable, emerging time series analyses on vertebrate gut microbiomes show that gut microbial composition can change rapidly from 1 day to the next, with consequences for host physical functioning, health, and fitness. Hence, the next frontier of microbiome research will require longitudinal perspectives. Here we argue that primatologists, with their traditional focus on tracking the lives of individual animals and familiarity with longitudinal fecal sampling, are well positioned to conduct research at the forefront of gut microbiome dynamics. We begin by reviewing some of the most important ecological processes governing microbiome change over time, and briefly summarizing statistical challenges and approaches to microbiome time series analysis. We then introduce five questions of general interest to microbiome science where we think field-based primate studies are especially well positioned to fill major gaps: (a) Do early life events shape gut microbiome composition in adulthood? (b) Do shifting social landscapes cause gut microbial change? (c) Are gut microbiome phenotypes heritable across variable environments? (d) Does the gut microbiome show signs of host aging? And (e) do gut microbiome composition and dynamics predict host health and fitness? For all of these questions, we highlight areas where primatologists are uniquely positioned to make substantial contributions. We review preliminary evidence, discuss possible study designs, and suggest future directions.


Subject(s)
Gastrointestinal Microbiome , Primates/microbiology , Animals , Ecosystem , Feces/microbiology , Host Microbial Interactions , Longitudinal Studies , Social Environment
13.
Proc Biol Sci ; 286(1901): 20190431, 2019 04 24.
Article in English | MEDLINE | ID: mdl-31014219

ABSTRACT

Gut microbiota in geographically isolated host populations are often distinct. These differences have been attributed to between-population differences in host behaviours, environments, genetics and geographical distance. However, which factors are most important remains unknown. Here, we fill this gap for baboons by leveraging information on 13 environmental variables from 14 baboon populations spanning a natural hybrid zone. Sampling across a hybrid zone allowed us to additionally test whether phylosymbiosis (codiversification between hosts and their microbiota) is detectable in admixed, closely related primates. We found little evidence of genetic effects: none of host genetic ancestry, host genetic relatedness nor genetic distance between host populations were strong predictors of baboon gut microbiota. Instead, gut microbiota were best explained by the baboons' environments, especially the soil's geologic history and exchangeable sodium. Indeed, soil effects were 15 times stronger than those of host-population FST, perhaps because soil predicts which foods are present, or because baboons are terrestrial and consume soil microbes incidentally with their food. Our results support an emerging picture in which environmental variation is the dominant predictor of host-associated microbiomes. We are the first to show that such effects overshadow host species identity among members of the same primate genus.


Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Papio anubis/microbiology , Papio cynocephalus/microbiology , Soil/chemistry , Animals , Bacterial Physiological Phenomena , Hybridization, Genetic , Kenya
14.
mSystems ; 3(4)2018.
Article in English | MEDLINE | ID: mdl-30003142

ABSTRACT

[This corrects the article DOI: 10.1128/mSystems.00060-18.].

15.
mSystems ; 3(3)2018.
Article in English | MEDLINE | ID: mdl-29795799

ABSTRACT

The microbes of the human intestinal tract play a profound role in our health. The complex interactions between our gut microbial communities and the external environment, and the resulting functional consequences, can be difficult to disentangle. To address this problem, McDonald et al. (mSystems 3:e00031-18, 2018, https://doi.org/10.1128/mSystems.00031-18) present the first set of results from the American Gut Project, a citizen science-based data set currently comprised of over 10,000 gut microbiome samples and associated life history data. By combining this extensive data set with other published studies, the authors uncover novel relationships between gut microbiome structure and function. For example, they found that dietary plant diversity and recent antibiotic use predict both microbial and metabolomic diversity. McDonald et al. also demonstrate that there is high diversity across human gut microbiomes, even compared to the diversity of environmental microbiomes. The results from this study illuminate the potential of the citizen science approach to further our knowledge of host-associated microbial communities.

16.
Integr Comp Biol ; 57(4): 770-785, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-29048537

ABSTRACT

The mammalian gut microbiome plays a profound role in the physiology, metabolism, and overall health of its host. However, biologists have only a nascent understanding of the forces that drive inter-individual heterogeneity in gut microbial composition, especially the role of host social environment. Here we used 178 samples from 78 wild yellow baboons (Papio cynocephalus) living in two social groups to test how host social context, including group living, social interactions within groups, and transfer between social groups (e.g., dispersal) predict inter-individual variation in gut microbial alpha and beta diversity. We also tested whether social effects differed for prevalent "core" gut microbial taxa, which are thought to provide primary functions to hosts, versus rare "non-core" microbes, which may represent relatively transient environmental acquisitions. Confirming prior studies, we found that each social group harbored a distinct gut microbial community. These differences included both non-core and core gut microbial taxa, suggesting that these effects are not solely driven by recent gut microbial exposures. Within social groups, close grooming partners had more similar core microbiomes, but not non-core microbiomes, than individuals who rarely groomed each other, even controlling for kinship and diet similarity between grooming partners. Finally, in support of the idea that the gut microbiome can be altered by current social context, we found that the longer an immigrant male had lived in a given social group, the more closely his gut microbiome resembled the gut microbiomes of the group's long-term residents. Together, these results reveal the importance of a host's social context in shaping the gut microbiome and shed new light onto the microbiome-related consequences of male dispersal.


Subject(s)
Animal Distribution , Gastrointestinal Microbiome , Papio cynocephalus/microbiology , Papio cynocephalus/physiology , Social Behavior , Animals , Kenya , Male
17.
Sci Rep ; 6: 31519, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27528013

ABSTRACT

Field studies of wild vertebrates are frequently associated with extensive collections of banked fecal samples-unique resources for understanding ecological, behavioral, and phylogenetic effects on the gut microbiome. However, we do not understand whether sample storage methods confound the ability to investigate interindividual variation in gut microbiome profiles. Here, we extend previous work on storage methods for gut microbiome samples by comparing immediate freezing, the gold standard of preservation, to three methods commonly used in vertebrate field studies: lyophilization, storage in ethanol, and storage in RNAlater. We found that the signature of individual identity consistently outweighed storage effects: alpha diversity and beta diversity measures were significantly correlated across methods, and while samples often clustered by donor, they never clustered by storage method. Provided that all analyzed samples are stored the same way, banked fecal samples therefore appear highly suitable for investigating variation in gut microbiota. Our results open the door to a much-expanded perspective on variation in the gut microbiome across species and ecological contexts.


Subject(s)
Animals, Wild , Feces , Gastrointestinal Microbiome , Specimen Handling , Animals , Biodiversity , Feces/microbiology , Freeze Drying
18.
Environ Microbiol ; 18(5): 1312-25, 2016 05.
Article in English | MEDLINE | ID: mdl-25818066

ABSTRACT

Gut bacterial communities play essential roles in host biology, but to date we lack information on the forces that shape gut microbiota between hosts and over time in natural populations. Understanding these forces in wild primates provides a valuable comparative context that enriches scientific perspectives on human gut microbiota. To this end, we tested predictors of gut microbial composition in a well-studied population of wild baboons. Using cross-sectional and longitudinal samples collected over 13 years, we found that baboons harbour gut microbiota typical of other omnivorous primates, albeit with an especially high abundance of Bifidobacterium. Similar to previous work in humans and other primates, we found strong effects of both developmental transitions and diet on gut microbial composition. Strikingly, baboon gut microbiota appeared to be highly dynamic such that samples collected from the same individual only a few days apart were as different from each other as samples collected over 10 years apart. Despite the dynamic nature of baboon gut microbiota, we identified a set of core taxa that is common among primates, supporting the hypothesis that microbiota codiversify with their host species. Our analysis identified two tentative enterotypes in adult baboons that differ from those of humans and chimpanzees.


Subject(s)
Gastrointestinal Microbiome , Papio/microbiology , Age Factors , Animals , Bacteria/isolation & purification , Bifidobacterium/isolation & purification , Diet , Female , Gastrointestinal Tract/microbiology , Male , Papio/growth & development
19.
R Soc Open Sci ; 2(2): 140470, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26064604

ABSTRACT

White-nose syndrome (WNS), an emerging infectious disease caused by the novel fungus Pseudogymnoascus destructans, has devastated North American bat populations since its discovery in 2006. The little brown myotis, Myotis lucifugus, has been especially affected. The goal of this 2-year captive study was to determine the impact of hibernacula temperature and sex on WNS survivorship in little brown myotis that displayed visible fungal infection when collected from affected hibernacula. In study 1, we found that WNS-affected male bats had increased survival over females and that bats housed at a colder temperature survived longer than those housed at warmer temperatures. In study 2, we found that WNS-affected bats housed at a colder temperature fared worse than unaffected bats. Our results demonstrate that WNS mortality varies among individuals, and that colder hibernacula are more favourable for survival. They also suggest that female bats may be more negatively affected by WNS than male bats, which has important implications for the long-term survival of the little brown myotis in eastern North America.

20.
Elife ; 42015 Mar 16.
Article in English | MEDLINE | ID: mdl-25774601

ABSTRACT

Social relationships have profound effects on health in humans and other primates, but the mechanisms that explain this relationship are not well understood. Using shotgun metagenomic data from wild baboons, we found that social group membership and social network relationships predicted both the taxonomic structure of the gut microbiome and the structure of genes encoded by gut microbial species. Rates of interaction directly explained variation in the gut microbiome, even after controlling for diet, kinship, and shared environments. They therefore strongly implicate direct physical contact among social partners in the transmission of gut microbial species. We identified 51 socially structured taxa, which were significantly enriched for anaerobic and non-spore-forming lifestyles. Our results argue that social interactions are an important determinant of gut microbiome composition in natural animal populations-a relationship with important ramifications for understanding how social relationships influence health, as well as the evolution of group living.


Subject(s)
Gastrointestinal Microbiome/genetics , Metagenomics/methods , Papio/microbiology , Social Behavior , Social Environment , Animals , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Feces/microbiology , Female , Grooming , Humans , Male , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...