Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3180, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35210472

ABSTRACT

Parkinson's disease (PD) is clinically defined by the presence of the cardinal motor symptoms, which are associated with a loss of dopaminergic nigrostriatal neurons in the substantia nigra pars compacta (SNpc). While SNpc neurons serve as the prototypical cell-type to study cellular vulnerability in PD, there is an unmet need to extent our efforts to other neurons at risk. The noradrenergic locus coeruleus (LC) represents one of the first brain structures affected in Parkinson's disease (PD) and plays not only a crucial role for the evolving non-motor symptomatology, but it is also believed to contribute to disease progression by efferent noradrenergic deficiency. Therefore, we sought to characterize the electrophysiological properties of LC neurons in two distinct PD models: (1) in an in vivo mouse model of focal α-synuclein overexpression; and (2) in an in vitro rotenone-induced PD model. Despite the fundamental differences of these two PD models, α-synuclein overexpression as well as rotenone exposure led to an accelerated autonomous pacemaker frequency of LC neurons, accompanied by severe alterations of the afterhyperpolarization amplitude. On the mechanistic side, we suggest that Ca2+-activated K+ (SK) channels are mediators of the increased LC neuronal excitability, as pharmacological activation of these channels is sufficient to prevent increased LC pacemaking and subsequent neuronal loss in the LC following in vitro rotenone exposure. These findings suggest a role of SK channels in PD by linking α-synuclein- and rotenone-induced changes in LC firing rate to SK channel dysfunction.


Subject(s)
Norepinephrine/physiology , Parkinson Disease/physiopathology , Pars Compacta/physiology , Small-Conductance Calcium-Activated Potassium Channels/physiology , alpha-Synuclein/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Locus Coeruleus/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Prodromal Symptoms , Rotenone
2.
Anesth Analg ; 103(5): 1099-108, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17056939

ABSTRACT

In this study we investigated the effects of preoperative oral carbohydrate administration on postoperative insulin resistance (PIR), gastric fluid volume, preoperative discomfort, and variables of organ dysfunction in ASA physical status III-IV patients undergoing elective cardiac surgery, including those with noninsulin-dependent Type-2 diabetes mellitus. Before surgery, 188 patients were randomized to receive a clear 12.5% carbohydrate drink (CHO), flavored water (placebo), or to fast overnight (control). CHO and placebo were treated in double-blind format and received 800 mL of the corresponding beverage in the evening and 400 mL 2 h before surgery. Patients were monitored from induction of general anesthesia until 24 h postoperatively. Exogenous insulin requirements to control blood glucose levels

Subject(s)
Carbohydrates/administration & dosage , Cardiovascular Surgical Procedures , Elective Surgical Procedures , Preoperative Care , Administration, Oral , Aged , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/surgery , Double-Blind Method , Female , Humans , Insulin Resistance/physiology , Male , Middle Aged , Pilot Projects , Preoperative Care/methods , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...