Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
iScience ; 26(2): 106075, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36844451

ABSTRACT

The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.

2.
bioRxiv ; 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35411351

ABSTRACT

Background: The emergence of recombinant viruses is a threat to public health. Recombination of viral variants may combine variant-specific features that together catalyze viral escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. Methods: Multi-method amplicon and metagenomic sequencing of a clinical swab and the in vitro grown virus allowed for high-confidence detection of a novel recombinant variant. Mutational, phylogeographic, and structural analyses determined features of the recombinant genome and spike protein. Neutralization assays using infectious as well as pseudotyped viruses and point mutants thereof defined the recombinant's sensitivity to a panel of monoclonal antibodies and sera from vaccinated and/or convalescent individuals. Results: A novel Delta-Omicron SARS-CoV-2 recombinant was identified in an unvaccinated, immunosuppressed kidney transplant recipient treated with monoclonal antibody Sotrovimab. The recombination breakpoint is located in the spike N-terminal domain, adjacent to the Sotrovimab quaternary binding site, and results in a 5'-Delta AY.45 and a 3'-Omicron BA.1 mosaic spike protein. Delta and BA.1 are sensitive to Sotrovimab neutralization, whereas the Delta-Omicron recombinant is highly resistant to Sotrovimab, both with and without the RBD resistance mutation E340D. Conclusions: Recombination between circulating SARS-CoV-2 variants can functionally contribute to immune escape. It is critical to validate phenotypes of mosaic viruses and monitor immunosuppressed COVID-19 patients treated with monoclonal antibodies for the selection of recombinant and immune escape variants. (Funded by NYU, the National Institutes of Health, and others).

3.
J Clin Microbiol ; 60(4): e0238121, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35321554

ABSTRACT

Since the introduction of the varicella-zoster virus (VZV) vaccine in the United States in 1995, there has been a dramatic decrease in both the number and severity of varicella cases. However, VZV surveillance data and information on the VZV clade distribution in central nervous system (CNS) disease and non-CNS disease in New York State is not available. To investigate this, cerebrospinal fluid (CSF) samples from patients with encephalitis or meningitis and non-CSF samples from patients with non-CNS disease manifestations consistent with VZV, collected from 2004 to 2019, were tested with molecular VZV assays. A total of 341 CSF and 1,398 non-CSF samples that tested positive by a VZV-specific real-time PCR assay were further characterized as wild-type or vaccine strain by 3 biallelic real-time PCR assays targeting single nucleotide polymorphism (SNP) markers in open reading frame (ORF) 62. Genotyping was then performed on wild-type strains by conventional PCR and sequencing of 500-bp regions in ORFs 21, 22, and 50. Sequence analysis identified clades 1 to 5 in both sample types with a virtually identical clade distribution between CSF and non-CSF samples. In addition, 19 clade 6 and 13 clade 9 samples were detected in non-CSF samples after implementation of an expanded genotyping scheme, including ORF 29, 38, and 67. These clades were not detected in any CSF samples. Finally, a total of 28 vaccine strains were detected, 25 in the non-CSF samples and 3 in the CSF samples. All three cases of vaccine strain with CNS involvement experienced relatively minor symptoms of aseptic meningitis and fully recovered. These results support the evidence that while the VZV vaccine is capable of causing CNS disease, it is still a rare event and symptoms are typically less severe than those caused by wild-type infection.


Subject(s)
Encephalitis , Herpes Zoster , Vaccines , Central Nervous System , DNA, Viral , Herpes Zoster/epidemiology , Herpesvirus 3, Human/genetics , Humans , New York/epidemiology , Real-Time Polymerase Chain Reaction
4.
J Clin Microbiol ; 59(12): e0064921, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34550806

ABSTRACT

Fast and effective methods are needed for sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome to track genetic mutations and to identify new and emerging variants during the ongoing pandemic. The objectives were to assess the performance of the SARS-CoV-2 AmpliSeq research panel and S5 plug-in analysis tools for whole-genome sequencing analysis of SARS-CoV-2 and to compare the results with those obtained with the MiSeq-based ARTIC analysis pipeline, using metrics such as depth, coverage, and concordance of single-nucleotide variant (SNV) calls. A total of 191 clinical specimens and a single cultured isolate were extracted and sequenced with AmpliSeq technology and analysis tools. Of the 191 clinical specimens, 83 (with threshold cycle [CT] values of 15.58 to 32.54) were also sequenced using an Illumina MiSeq-based method with the ARTIC analysis pipeline, for direct comparison. A total of 176 of the 191 clinical specimens sequenced on the S5XL system and prepared using the SARS-CoV-2 research panel had nearly complete coverage (>98%) of the viral genome, with an average depth of 5,031×. Similar coverage levels (>98%) were observed for 81/83 primary specimens that were sequenced with both methods tested. The sample with the lowest viral load (CT value of 32.54) achieved 89% coverage using the MiSeq method and failed to sequence with the AmpliSeq method. Consensus sequences produced by each method were identical for 81/82 samples in areas of equal coverage, with a single difference present in one sample. The AmpliSeq approach is as effective as the Illumina-based method using ARTIC v3 amplification for sequencing SARS-CoV-2 directly from patient specimens across a range of viral loads (CT values of 15.56 to 32.54 [median, 22.18]). The AmpliSeq workflow is very easily automated with the Ion Chef and S5 instruments and requires less training and experience with next-generation sequencing sample preparation than the Illumina workflow.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Pandemics , Whole Genome Sequencing
5.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33674284

ABSTRACT

Identifying SARS-CoV-2 infections through aggressive diagnostic testing remains critical to tracking and curbing the spread of the COVID-19 pandemic. Collection of nasopharyngeal swabs (NPS), the preferred sample type for SARS-CoV-2 detection, has become difficult due to the dramatic increase in testing and consequent supply strain. Therefore, alternative specimen types have been investigated that provide similar detection sensitivity with reduced health care exposure and the potential for self-collection. In this study, the detection sensitivity of SARS-CoV-2 in nasal swabs (NS) and saliva was compared to that of NPS using matched specimens from two outpatient cohorts in New York State (total n = 463). The first cohort showed only a 5.4% positivity, but the second cohort (n = 227) had a positivity rate of 41%, with sensitivity in NPS, NS, and saliva of 97.9%, 87.1%, and 87.1%, respectively. Whether the reduced sensitivity of NS or saliva is acceptable must be assessed in the settings where they are used. However, we sought to improve on it by validating a method to mix the two sample types, as the combination of nasal swab and saliva resulted in 94.6% SARS-CoV-2 detection sensitivity. Spiking experiments showed that combining them did not adversely affect the detection sensitivity in either. Virus stability in saliva was also investigated, with and without the addition of commercially available stabilizing solutions. The virus was stable in saliva at both 4°C and room temperature for up to 7 days. The addition of stabilizing solutions did not enhance stability and, in some situations, reduced detectable virus levels.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Saliva/virology , Specimen Handling/methods , Humans , Nasopharynx/virology , New York , Pandemics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Temperature
6.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-33468607

ABSTRACT

Accommodating large increases in sample workloads has presented a major challenge to clinical laboratories during the coronavirus disease 2019 (COVID-19) pandemic. Despite the implementation of automated detection systems and previous efficiencies, including barcoding, electronic data transfer, and extensive robotics, capacities have struggled to meet the demand. Sample pooling has been suggested as an additional strategy to address this need. The greatest concern with this approach in clinical settings is the potential for reduced sensitivity, particularly detection failures with weakly positive samples. To investigate this possibility, detection rates in pooled samples were evaluated, with a focus on pools containing weakly positive specimens. Additionally, the frequencies of occurrence of weakly positive samples during the pandemic were reviewed. Weakly positive specimens, with threshold cycle (CT ) values of 33 or higher, were detected in 95% of 60 five-sample pools but only 87% of 39 nine-sample pools. The proportion of positive samples with very low viral loads rose markedly during the first few months of the pandemic, peaking in June, decreasing thereafter, and remaining level since August. At all times, weakly positive specimens comprised a significant component of the sample population, ranging from 29% to >80% for CT values above 31. In assessing the benefits of pooling strategies, however, other aspects of the testing process must be considered. Accessioning, result data management, electronic data transfer, reporting, and billing are not streamlined and may be complicated by pooling procedures. Therefore, the impact on the entire laboratory process needs to be carefully assessed prior to implementing such a strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Pandemics , Specimen Handling
7.
J Gen Virol ; 98(2): 201-211, 2017 02.
Article in English | MEDLINE | ID: mdl-28284278

ABSTRACT

The error rate of the RNA-dependent RNA polymerase (RdRp) of RNA viruses is important in maintaining genetic diversity for viral adaptation and fitness. Numerous studies have shown that mutagen-resistant RNA virus variants display amino acid mutations in the RdRp and other replicase subunits, which in turn exhibit an altered fidelity phenotype affecting viral fitness, adaptability and pathogenicity. St. Louis encephalitis virus (SLEV), like its close relative West Nile virus, is a mosquito-borne flavivirus that has the ability to cause neuroinvasive disease in humans. Here, we describe the successful generation of multiple ribavirin-resistant populations containing a shared amino acid mutation in the SLEV RdRp (E416K). These E416K mutants also displayed resistance to the antiviral T-1106, an RNA mutagen similar to ribavirin. Structural modelling of the E416K polymerase mutation indicated its location in the pinky finger domain of the RdRp, distant from the active site. Deep sequencing of the E416K mutant revealed lower genetic diversity than wild-type SLEV after growth in both vertebrate and invertebrate cells. Phenotypic characterization showed that E416K mutants displayed similar or increased replication in mammalian cells, as well as modest attenuation in mosquito cells, consistent with previous work with West Nile virus high-fidelity variants. In addition, attenuation was limited to mosquito cells with a functional RNA interference response, suggesting an impaired capacity to escape RNA interference could contribute to attenuation of high-fidelity variants. Our results provide increased evidence that RNA mutagen resistance arises through modulation of the RdRp and give further insight into the consequences of altered fidelity of flaviviruses.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Encephalitis Virus, St. Louis/drug effects , Encephalitis Virus, St. Louis/genetics , Encephalitis, St. Louis/virology , Mutagens/pharmacology , RNA-Dependent RNA Polymerase/genetics , Ribavirin/pharmacology , Viral Nonstructural Proteins/genetics , Amino Acid Substitution , Encephalitis Virus, St. Louis/enzymology , Glutamic Acid/genetics , HeLa Cells , Humans , Lysine/genetics , Models, Molecular , Mutation , Nucleosides/pharmacology , Protein Domains , Pyrazines/pharmacology , RNA-Dependent RNA Polymerase/chemistry , Viral Nonstructural Proteins/chemistry
8.
PLoS Pathog ; 11(6): e1005009, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26114757

ABSTRACT

High rates of error-prone replication result in the rapid accumulation of genetic diversity of RNA viruses. Recent studies suggest that mutation rates are selected for optimal viral fitness and that modest variations in replicase fidelity may be associated with viral attenuation. Arthropod-borne viruses (arboviruses) are unique in their requirement for host cycling and may necessitate substantial genetic and phenotypic plasticity. In order to more thoroughly investigate the correlates, mechanisms and consequences of arbovirus fidelity, we selected fidelity variants of West Nile virus (WNV; Flaviviridae, Flavivirus) utilizing selection in the presence of a mutagen. We identified two mutations in the WNV RNA-dependent RNA polymerase associated with increased fidelity, V793I and G806R, and a single mutation in the WNV methyltransferase, T248I, associated with decreased fidelity. Both deep-sequencing and in vitro biochemical assays confirmed strain-specific differences in both fidelity and mutational bias. WNV fidelity variants demonstrated host-specific alterations to replicative fitness in vitro, with modest attenuation in mosquito but not vertebrate cell culture. Experimental infections of colonized and field populations of Cx. quinquefaciatus demonstrated that WNV fidelity alterations are associated with a significantly impaired capacity to establish viable infections in mosquitoes. Taken together, these studies (i) demonstrate the importance of allosteric interactions in regulating mutation rates, (ii) establish that mutational spectra can be both sequence and strain-dependent, and (iii) display the profound phenotypic consequences associated with altered replication complex function of flaviviruses.


Subject(s)
Culicidae/virology , Genetic Variation/genetics , Virus Replication/genetics , West Nile virus/genetics , Animals , Base Sequence , Host-Pathogen Interactions/genetics , Mutation/genetics , RNA-Dependent RNA Polymerase/genetics
9.
J Virol Methods ; 208: 152-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25066276

ABSTRACT

The objectives of this study were to develop a user-friendly, gel element microarray test for influenza virus detection, subtyping, and neuraminidase inhibitor resistance detection, assess the performance characteristics of the assay, and perform a clinical evaluation on retrospective nasopharyngeal swab specimens. A streamlined microarray workflow enabled a single user to run up to 24 tests in an 8h shift. The most sensitive components of the test were the primers and probes targeting the A/H1 pdm09 HA gene with an analytical limit of detection (LoD) <100 gene copies (gc) per reaction. LoDs for all targets in nasopharyngeal swab samples were ≤1000 gc, with the exception of one target in the seasonal A/H1N1 subtype. Seasonal H275Y variants were detectable in a mixed population when present at >5% with wild type virus, while the 2009 pandemic H1N1 H275Y variant was detectable at ≤1% in a mixture with pandemic wild type virus. Influenza typing and subtyping results concurred with those obtained with real-time RT-PCR assays on more than 97% of the samples tested. The results demonstrate that a large panel of single-plex, real-time RT-PCR tests can be translated to an easy-to-use, sensitive, and specific microarray test for potential diagnostic use.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/isolation & purification , Microarray Analysis/methods , Molecular Diagnostic Techniques/methods , Neuraminidase/genetics , Viral Proteins/genetics , Antiviral Agents/pharmacology , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Laboratories , Molecular Typing/methods , Mutant Proteins/genetics , Nasopharynx/virology , Oseltamivir/pharmacology , Retrospective Studies , Sensitivity and Specificity , Time Factors , Workforce
10.
J Virol ; 87(17): 9904-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23824816

ABSTRACT

The hemagglutination inhibition (HAI) assay is the primary measurement used for identifying antigenically novel influenza virus strains. HAI assays measure the amount of reference sera required to prevent virus binding to red blood cells. Receptor binding avidities of viral strains are not usually taken into account when interpreting these assays. Here, we created antigenic maps of human H3N2 viruses that computationally account for variation in viral receptor binding avidities. These new antigenic maps differ qualitatively from conventional antigenic maps based on HAI measurements alone. We experimentally focused on an antigenic cluster associated with a single N145K hemagglutinin (HA) substitution that occurred between 1992 and 1995. Reverse-genetics experiments demonstrated that the N145K HA mutation increases viral receptor binding avidity. Enzyme-linked immunosorbent assays (ELISA) revealed that the N145K HA mutation does not prevent antibody binding; rather, viruses possessing this mutation escape antisera in HAI assays simply by attaching to cells more efficiently. Unexpectedly, we found an asymmetric antigenic effect of the N145K HA mutation. Once H3N2 viruses acquired K145, an epitope involving amino acid 145 became antigenically dominant. Antisera raised against an H3N2 strain possessing K145 had reduced reactivity to H3N2 strains possessing N145. Thus, individual mutations in HA can influence antigenic groupings of strains by altering receptor binding avidity and by changing the dominance of antibody responses. Our results indicate that it will be important to account for variation in viral receptor binding avidity when performing antigenic analyses in order to identify genuine antigenic differences among influenza virus variants.


Subject(s)
Antigens, Viral/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Mutation , Amino Acid Substitution , Animals , Antibodies, Viral , Antigens, Viral/chemistry , Epitope Mapping , Ferrets , Genes, Viral , Hemagglutination Inhibition Tests , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Immunodominant Epitopes/genetics , Influenza A Virus, H3N2 Subtype/physiology , Models, Molecular , Protein Conformation , Receptors, Virus/metabolism , Turkeys , Virus Attachment
11.
J Clin Virol ; 58(1): 138-43, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23880159

ABSTRACT

BACKGROUND: Rapid, simple and efficient influenza RNA purification from clinical samples is essential for sensitive molecular detection of influenza infection. Automation of the TruTip extraction method can increase sample throughput while maintaining performance. OBJECTIVES: To automate TruTip influenza RNA extraction using an Eppendorf epMotion robotic liquid handler, and to compare its performance to the bioMerieux easyMAG and Qiagen QIAcube instruments. STUDY DESIGN: Extraction efficacy and reproducibility of the automated TruTip/epMotion protocol was assessed from influenza-negative respiratory samples spiked with influenza A and B viruses. Clinical extraction performance from 170 influenza A and B-positive respiratory swabs was also evaluated and compared using influenza A and B real-time RT-PCR assays. RESULTS: TruTip/epMotion extraction efficacy was 100% in influenza virus-spiked samples with at least 745 influenza A and 370 influenza B input gene copies per extraction, and exhibited high reproducibility over four log10 concentrations of virus (<1% CV). RNA yields between the three automated methods differed by less than 0.5 log10 gene copies. 99% of clinical specimens that were PCR-positive after easyMAG or QIAcube extraction were also positive following TruTip extraction. Overall Ct value differences obtained between TruTip/epMotion and easyMAG/QIAcube clinical extracts ranged from 1.24 to 1.91. Pairwise comparisons of Ct values showed a high correlation of the TruTip/epMotion protocol to the other methods (R2>0.90). CONCLUSION: The automated TruTip/epMotion protocol is a simple and rapid extraction method that reproducibly purifies influenza RNA from respiratory swabs, with comparable efficacy and efficiency to both the easyMAG and QIAcube instruments.


Subject(s)
Automation, Laboratory/methods , Influenza, Human/diagnosis , Orthomyxoviridae/genetics , RNA, Viral/isolation & purification , Respiratory System/virology , Specimen Handling/methods , Humans , Orthomyxoviridae/isolation & purification , RNA, Viral/genetics , Reproducibility of Results , Sensitivity and Specificity , Time Factors
12.
PLoS One ; 8(6): e66325, 2013.
Article in English | MEDLINE | ID: mdl-23805213

ABSTRACT

It is generally accepted that human influenza viruses bind glycans containing sialic acid linked α2-6 to the next sugar, that avian influenza viruses bind glycans containing the α2-3 linkage, and that mutations that change the binding specificity might change the host tropism. We noted that human H3N2 viruses showed dramatic differences in their binding specificity, and so we embarked on a study of representative human H3N2 influenza viruses, isolated from 1968 to 2012, that had been isolated and minimally passaged only in mammalian cells, never in eggs. The 45 viruses were grown in MDCK cells, purified, fluorescently labeled and screened on the Consortium for Functional Glycomics Glycan Array. Viruses isolated in the same season have similar binding specificity profiles but the profiles show marked year-to-year variation. None of the 610 glycans on the array (166 sialylated glycans) bound to all viruses; the closest was Neu5Acα2-6(Galß1-4GlcNAc)3 in either a linear or biantennary form, that bound 42 of the 45 viruses. The earliest human H3N2 viruses preferentially bound short, branched sialylated glycans while recent viruses bind better to long polylactosamine chains terminating in sialic acid. Viruses isolated in 1996, 2006, 2010 and 2012 bind glycans with α2-3 linked sialic acid; for 2006, 2010 and 2012 viruses this binding was inhibited by oseltamivir, indicating binding of α2-3 sialylated glycans by neuraminidase. More significantly, oseltamivir inhibited virus entry of 2010 and 2012 viruses into MDCK cells. All of these viruses were representative of epidemic strains that spread around the world, so all could infect and transmit between humans with high efficiency. We conclude that the year-to-year variation in receptor binding specificity is a consequence of amino acid sequence changes driven by antigenic drift, and that viruses with quite different binding specificity and avidity are equally fit to infect and transmit in the human population.


Subject(s)
Influenza A Virus, H3N2 Subtype , Influenza, Human , Polysaccharides , Receptors, Virus , Sialic Acids , Animals , Dogs , Female , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/genetics , Influenza, Human/metabolism , Madin Darby Canine Kidney Cells , Male , Polysaccharides/genetics , Polysaccharides/metabolism , Receptors, Virus/genetics , Sialic Acids/genetics , Sialic Acids/metabolism
13.
J Virol Methods ; 183(1): 8-13, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22425698

ABSTRACT

This report describes the development and pre-clinical testing of a new, random-access RNA sample preparation system (TruTip) for nasopharyngeal samples. The system is based on a monolithic, porous nucleic acid binding matrix embedded within an aerosol-resistant pipette tip and can be operated with single or multi-channel pipettors. Equivalent extraction efficiencies were obtained between automated QIAcube and manual TruTip methods at 10(6) gene copies influenza A per mL nasopharyngeal aspirate. Influenza A and B amended into nasopharyngeal swabs (in viral transport medium) were detected by real-time RT-PCR at approximately 745 and 370 gene copies per extraction, respectively. RNA extraction efficiency in nasopharyngeal swabs was also comparable to that obtained on an automated QIAcube instrument over a range of input concentrations; the correlation between threshold cycles (or nucleic acid recovery) for TruTip and QIAcube-purified RNA was R(2)>0.99. Preclinical testing of TruTip on blinded nasopharyngeal swab samples resulted in 98% detection accuracy relative to a clinically validated easyMAG extraction method. The physical properties of the TruTip binding matrix and ability to customize its shape and dimensions likewise make it amenable to automation and/or fluidic integration.


Subject(s)
Influenza A virus/genetics , Influenza B virus/genetics , Nasopharynx/virology , RNA, Viral/isolation & purification , Specimen Handling/methods , Virology/methods , Animals , Humans
14.
J Clin Virol ; 53(3): 256-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22217900

ABSTRACT

BACKGROUND: Human metapneumovirus (hMPV) is the second leading cause of lower respiratory infection (LRI) in children around the world and has been linked to LRI in multiple studies. Currently, hMPV is classified into 2 major subtypes (A and B), each with 2 subgroups (1 and 2). OBJECTIVE: To determine which hMPV genotypes were present in NYS patients with influenza-like illness (ILI) from February through April 2010, during a period of unusually heightened activity. STUDY DESIGN: Specimens were collected from February through April of 2010 from patients presenting with ILI who were previously confirmed as positive for hMPV by real-time RT-PCR. A 700 base pair region of the hMPV fusion (F) gene was amplified, sequenced and resulting sequences aligned. A phylogenic tree was constructed based on prototype strains, and the partial F gene sequences obtained in this study. RESULTS: Bi-directional sequence was obtained from 30 patient samples and included in the phylogenic analysis. Specimen sequences grouped into hMPV genotype A2a (16), A2b (9), B2 (4) and B1 (1). No A1 genotypes were found. CONCLUSION: Previously, reports have demonstrated that genotypes A1, A2, B1 and B2 circulate every season, usually with one dominant strain. In contrast, late in the 2009-2010 respiratory season, 4 of the 5 recognized genotypes of hMPV were isolated from NYS ILI patients, and by sequencing a larger portion of the fusion gene, we were able to identify the A2a and A2b genotypes.


Subject(s)
Metapneumovirus/genetics , Paramyxoviridae Infections/virology , Respiratory Tract Infections/virology , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Genotype , Humans , Infant , Metapneumovirus/classification , Middle Aged , New York , Phylogeny , Real-Time Polymerase Chain Reaction
15.
Microarrays (Basel) ; 1(3): 107-24, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-27605339

ABSTRACT

This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

16.
J Infect Dis ; 203(2): 168-74, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21288815

ABSTRACT

Mixed infections with seasonal influenza A virus strains are a common occurrence and an important source of genetic diversity. Prolonged viral shedding, as observed in immunocompromised individuals, can lead to mutational accumulation over extended periods. Recently, drug resistance was reported in immunosuppressed patients infected with the 2009 pandemic influenza A (H1N1) virus within a few days after oseltamivir treatment was initiated. To better understand the evolution and emergence of drug resistance in these circumstances, we used a deep sequencing approach to survey the viral population from an immunosuppressed patient infected with H1N1/2009 influenza and treated with neuraminidase inhibitors. This patient harbored 3 genetic variants from 2 phylogenetically distinct viral clades of pandemic H1N1/2009, strongly suggestive of mixed infection. Strikingly, one of these variants also developed drug resistance de novo in response to oseltamivir treatment. Immunocompromised individuals may, therefore, constitute an important source of genetic and phenotypic diversity, both through mixed infection and de novo mutation.


Subject(s)
Antiviral Agents/pharmacology , Biodiversity , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Oseltamivir/pharmacology , Adolescent , Genotype , High-Throughput Nucleotide Sequencing , Humans , Immunocompromised Host , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/epidemiology , Male , Molecular Sequence Data , Pandemics , Phylogeny , RNA, Viral/genetics , Sequence Homology
17.
J Virol ; 84(11): 5715-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20237080

ABSTRACT

The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza "off-season," we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.


Subject(s)
Disease Outbreaks , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human/transmission , Animals , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza, Human/epidemiology , Influenza, Human/virology , New York/epidemiology , Phylogeny , Seasons , Sequence Analysis , Swine
18.
PLoS Curr ; 1: RRN1126, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-20029664

ABSTRACT

Background Since its initial detection in April 2009, the A/H1N1pdm influenza virus has spread rapidly in humans, with over 5,700 human deaths. However, little is known about the evolutionary dynamics of H1N1pdm and its geographic and temporal diversification.Methods Phylogenetic analysis was conducted upon the concatenated coding regions of whole-genome sequences from 290 H1N1pdm isolates sampled globally between April 1 - July 9, 2009, including relatively large samples from the US states of Wisconsin and New York. Results At least 7 phylogenetically distinct viral clades have disseminated globally and co-circulated in localities that experienced multiple introductions of H1N1pdm. The epidemics in New York and Wisconsin were dominated by two different clades, both phylogenetically distinct from the viruses first identified in California and Mexico, suggesting an important role for founder effects in determining local viral population structures. Conclusions Determining the global diversity of H1N1pdm is central to understanding the evolution and spatial spread of the current pandemic, and to predict its future impact on human populations. Our results indicate that H1N1pdm has already diversified into distinct viral lineages with defined spatial patterns.

19.
J Virol ; 83(17): 8832-41, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19553313

ABSTRACT

The emergence of viral infections with potentially devastating consequences for human health is highly dependent on their underlying evolutionary dynamics. One likely scenario for an avian influenza virus, such as A/H5N1, to evolve to one capable of human-to-human transmission is through the acquisition of genetic material from the A/H1N1 or A/H3N2 subtypes already circulating in human populations. This would require that viruses of both subtypes coinfect the same cells, generating a mixed infection, and then reassort. Determining the nature and frequency of mixed infection with influenza virus is therefore central to understanding the emergence of pandemic, antigenic, and drug-resistant strains. To better understand the potential for such events, we explored patterns of intrahost genetic diversity in recently circulating strains of human influenza virus. By analyzing multiple viral genome sequences sampled from individual influenza patients we reveal a high level of mixed infection, including diverse lineages of the same influenza virus subtype, drug-resistant and -sensitive strains, those that are likely to differ in antigenicity, and even viruses of different influenza virus types (A and B). These results reveal that individuals can harbor influenza viruses that differ in major phenotypic properties, including those that are antigenically distinct and those that differ in their sensitivity to antiviral agents.


Subject(s)
Evolution, Molecular , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/epidemiology , Influenza, Human/virology , Reassortant Viruses , Cluster Analysis , Comorbidity , Humans , Influenza A virus/isolation & purification , Influenza B virus/isolation & purification , Molecular Sequence Data , Recombination, Genetic , Sequence Analysis, DNA , Sequence Homology
20.
PLoS Pathog ; 4(2): e1000012, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18463694

ABSTRACT

The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized.


Subject(s)
Disease Outbreaks , Evolution, Molecular , Genes, Viral , Genome, Viral , Influenza A Virus, H1N1 Subtype/genetics , Reassortant Viruses/genetics , Hemagglutinins, Viral , Humans , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/virology , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Recombination, Genetic , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...