Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(1): 324-329, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38205023

ABSTRACT

The compound material titanium oxycarbide (TiOC) is found to be an effective electrocatalyst for the electrochemical oxidation of ethanol to CO2. The complete course of this reaction is one of the main challenges in direct ethanol fuel cells (DEFCs). While TiOC has previously been investigated as catalyst support material only, in this study we show that TiOC alone is able to oxidize ethanol to acetaldehyde without the need of expensive noble metal catalysts like Pt. It is suggested that this behavior is attributed to the presence of both undercoordinated sites, which allow ethanol to adsorb, and oxygenated sites, which facilitate the activation of water. This is a milestone in DEFC research and development and opens up innovative possibilities for the design of catalyst materials for intermediate temperature fuel cells.

2.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862508

ABSTRACT

A versatile multifunctional laboratory-based near ambient pressure x-ray photoelectron spectroscopy (XPS) instrument is presented. The entire device is highly customized regarding geometry, exchangeable manipulators and sample stages for liquid- and solid-state electrochemistry, cryochemistry, and heterogeneous catalysis. It therefore delivers novel and unique access to a variety of experimental approaches toward a broad choice of functional materials and their specific surface processes. The high-temperature (electro)catalysis manipulator is designed for probing solid state/gas phase interactions for heterogeneous catalysts including solid electrolyzer/fuel cell electrocatalysts at pressures up to 15 mbar and temperatures from room temperature to 1000 °C. The liquid electrochemistry manipulator is specifically designed for in situ spectroscopic investigations of polarized solid/liquid interfaces using aqueous electrolytes and the third one for experiments for ice and ice-like materials at cryogenic temperatures to approximately -190 °C. The flexible and modular combination of these setups provides the opportunity to address a broad spectrum of in situ and operando XPS experiments on a laboratory-based system, circumventing the limited accessibility of experiments at synchrotron facilities.

3.
ACS Catal ; 13(9): 5780-5786, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37180961

ABSTRACT

Transition metal carbides, especially Mo2C, are praised to be efficient electrocatalysts to reduce CO2 to valuable hydrocarbons. However, on Mo2C in an aqueous electrolyte, exclusively the competing hydrogen evolution reaction takes place, and this discrepancy to theory was traced back to the formation of a thin oxide layer at the electrode surface. Here, we study the CO2 reduction activity at Mo2C in a non-aqueous electrolyte to avoid such passivation and to determine products and the CO2 reduction reaction pathway. We find a tendency of CO2 to reduce to carbon monoxide. This process is inevitably coupled with the decomposition of acetonitrile to a 3-aminocrotonitrile anion. Furthermore, a unique behavior of the non-aqueous acetonitrile electrolyte is found, where the electrolyte, instead of the electrocatalyst, governs the catalytic selectivity of the CO2 reduction. This is evidenced by in situ electrochemical infrared spectroscopy on different electrocatalysts as well as by density functional theory calculations.

4.
ACS Catal ; 11(16): 10324-10332, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34476113

ABSTRACT

The hydrogen evolution reaction (HER) has been crucial for the development of fundamental knowledge on electrocatalysis and electrochemistry, in general. In alkaline media, many key questions concerning pH-dependent structure-activity relations and the underlying activity descriptors remain unclear. While the presence of Ni(OH)2 deposited on Pt(111) has been shown to highly improve the rate of the HER through the electrode's bifunctionality, no studies exist on how low coverages of Ni(OH)2 influence the electrocatalytic behavior of Cu surfaces, which is a low-cost alternative to Pt. Here, we demonstrate that Cu(111) modified with 0.1 and 0.2 monolayers (ML) of Ni(OH)2 exhibits an unusual non-linear activity trend with increasing coverage. By combining in situ structural investigations with studies on the interfacial water orientation using electrochemical scanning tunneling microscopy and laser-induced temperature jump experiments, we find a correlation between a particular threshold of surface roughness and the decrease in the ordering of the water network at the interface. The highly disordered water ad-layer close to the onset of the HER, which is only present for 0.2 ML of Ni(OH)2, facilitates the reorganization of the interfacial water molecules to accommodate for charge transfer, thus enhancing the rate of the reaction. These findings strongly suggest a general validity of the interfacial water reorganization as an activity descriptor for the HER in alkaline media.

5.
ACS Catal ; 11(8): 4920-4928, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33898080

ABSTRACT

Compound materials, such as transition-metal (TM) carbides, are anticipated to be effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) to useful chemicals. This expectation is nurtured by density functional theory (DFT) predictions of a break of key adsorption energy scaling relations that limit CO2RR at parent TMs. Here, we evaluate these prospects for hexagonal Mo2C in aqueous electrolytes in a multimethod experiment and theory approach. We find that surface oxide formation completely suppresses the CO2 activation. The oxides are stable down to potentials as low as -1.9 V versus the standard hydrogen electrode, and solely the hydrogen evolution reaction (HER) is found to be active. This generally points to the absolute imperative of recognizing the true interface establishing under operando conditions in computational screening of catalyst materials. When protected from ambient air and used in nonaqueous electrolyte, Mo2C indeed shows CO2RR activity.

6.
ACS Appl Energy Mater ; 3(4): 3477-3487, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32363329

ABSTRACT

Developing sodium (Na)-ion batteries is highly appealing because they offer the potential to be made from raw materials, which hold the promise to be less expensive, less toxic, and at the same time more abundant compared to state-of-the-art lithium (Li)-ion batteries. In this work, the Na-ion storage capability of nanostructured organic-inorganic polyaniline (PANI) titanium dioxide (TiO2) composite electrodes is studied. Self-organized, carbon-coated, and oxygen-deficient anatase TiO2-x -C nanotubes (NTs) are fabricated by a facile one-step anodic oxidation process followed by annealing at high temperatures in an argon-acetylene mixture. Subsequent electropolymerization of a thin film of PANI results in the fabrication of highly conductive and well-ordered, nanostructured organic-inorganic polyaniline-TiO2 composite electrodes. As a result, the PANI-coated TiO2-x -C NT composite electrodes exhibit higher Na storage capacities, significantly better capacity retention, advanced rate capability, and better Coulombic efficiencies compared to PANI-coated Ti metal and uncoated TiO2-x -C NTs for all current rates (C-rates) investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...