Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3071, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555162

ABSTRACT

Unlimited access to calorie-dense, palatable food is a hallmark of Western societies and substantially contributes to the worldwide rise of metabolic disorders. In addition to promoting overconsumption, palatable diets dampen daily intake patterns, further augmenting metabolic disruption. We developed a paradigm to reveal differential timing in the regulation of food intake behavior in mice. While homeostatic intake peaks in the active phase, conditioned place preference and choice experiments show an increased sensitivity to overeating on palatable food during the rest phase. This hedonic appetite rhythm is driven by endogenous circadian clocks in dopaminergic neurons of the ventral tegmental area (VTA). Mice with disrupted clock function in the VTA lose their hedonic overconsumption rhythms without affecting homeostatic intake. These findings assign a functional role of VTA clocks in modulating palatable feeding behaviors and identify a potential therapeutic route to counteract hyperphagy in an obesogenic environment.


Subject(s)
Circadian Rhythm , Dopaminergic Neurons/physiology , Feeding Behavior , Ventral Tegmental Area/physiology , Animals , Appetite , Behavior, Animal , Choice Behavior , Homeostasis , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Oscillometry
SELECTION OF CITATIONS
SEARCH DETAIL
...