Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 344: 123316, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38185358

ABSTRACT

This study presents the mineralogy and strontium isotope ratio (87Sr/86Sr) of 21 pathological biominerals (bladder and kidney stones) collected from patients admitted between 2018 and 2020 at the Department of Urology of the San Pio Hospital (Benevento, southern Italy). Urinary stones belong to the calcium oxalate, purine or calcium phosphate mineralogy types. Their corresponding 87Sr/86Sr range from 0.707607 for an uricite sample to 0.709970 for a weddellite one, and seem to be partly discriminated based on the mineralogy. The comparison with the isotope characteristics of 38 representative Italian bottled and tap drinking waters show a general overlap in 87Sr/86Sr with the biominerals. However, on a smaller geographic area (Campania Region), we observe small 87Sr/86Sr differences between the biominerals and local waters. This may be explained by external Sr inputs for example from agriculture practices, inhaled aerosols (i.e., particulate matter), animal manure and sewage, non-regional foods. Nevertheless, biominerals of patients that stated to drink and eat local water/wines and foods every day exhibited a narrower 87Sr/86Sr range roughly matching the typical isotope ratios of local geological materials and waters, as well as those of archaeological biominerals from the same area. Finally, we conclude that the strontium isotope signature of urinary stones may reflect that of the environmental matrices surrounding patients, but future investigations are recommended to ultimately establish the potential for pathological biominerals as reliable biomonitoring proxies, taking into the account the contribution of the external sources of Sr.


Subject(s)
Drinking Water , Urinary Calculi , Animals , Humans , Strontium Isotopes/analysis , Isotopes , Agriculture , Strontium
2.
Environ Geochem Health ; 44(10): 3297-3320, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34529244

ABSTRACT

This paper represents the first result of an active collaboration between the University of Sannio and the San Pio Hospital (Benevento, Italy), started in the 2018, that aims to a detailed mineralogical investigation of urinary stones of patients from Campania region. Herein, selected human bladder stones have been deeply characterized for clinical purposes and environmental biomonitoring, focusing on the importance to evaluate the concentration and distribution of undesired trace elements by means of microscopic techniques in the place of conventional wet chemical analyses. A rare bladder stone with a sea-urchin appearance, known as jackstone calculus, were also investigated (along with bladder stones made of uric acid and brushite) by means a comprehensive analytical approach, including Synchrotron X-ray Diffraction and Simultaneous Thermal Analyses. Main clinical assumptions were inferred according to the morpho-constitutional classification of bladder stones and information about patient's medical history and lifestyle. In most of the analyzed uroliths, undesired trace elements such as copper, cadmium, lead, chromium, mercury and arsenic have been detected and generally attributable to environmental pollution or contaminated food. Simultaneous occurrence of selenium and mercury should denote a methylmercury detoxification process, probably leading to the formation of a very rare HgSe compound known as tiemannite.


Subject(s)
Arsenic , Mercury , Methylmercury Compounds , Selenium , Trace Elements , Urinary Bladder Calculi , Urinary Calculi , Cadmium , Chromium , Copper , Humans , Uric Acid/analysis , Urinary Calculi/chemistry , Urinary Calculi/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...