Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Drug Monit ; 46(4): 522-529, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38498915

ABSTRACT

BACKGROUND: Legally prescribed benzodiazepines (BZDs) and designer BZDs are widely misused and must be determined in multiple contexts (eg, overdose, drug-facilitated sexual assaults, or driving under the influence of drugs). This study aimed to develop a method for measuring serum BZD levels using probe electrospray ionization (PESI) mass spectrometry and an isotope dilution approach. METHODS: A tandem mass spectrometer equipped with a probe electrospray ionization source in multiple reaction monitoring mode was used. Isotope dilution was applied for quantification using a deuterated internal standard at a fixed concentration for alprazolam, bromazepam, diazepam, nordiazepam, oxazepam, temazepam, zolpidem, and zopiclone. This method included designer BZDs: clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, meclonazepam, nifoxipam, and pyrazolam. Sample preparation was done by mixing 10 µL of serum with 500 µL of an ethanol/ammonium formate 0.01 mol/L buffer. Complete validation was performed, and the method was compared with liquid chromatography coupled with mass spectrometry (LC-MS/MS) and immunoassays (IC) by analyzing 40 real samples. RESULTS: The analysis time for identification and quantification of the 18 molecules was 2.5 minutes. This method was fully validated, and the limits of quantification varied from 5 to 50 mcg/L depending on the molecule. In the 40 real samples, 100% of molecules (n = 89) were detected by both LC-MS/MS and PESI-MS/MS, and regression analysis showed excellent agreement between the 2 methods (r 2 = 0.98). On IC, bromazepam and zolpidem were not detected in 2 and 1 cases, respectively. CONCLUSIONS: PESI-MS/MS allows serum BZD detection and measurement. Given the isotope dilution approach, a calibration curve was not required, and its performance was similar to that of LC-MS/MS, and its specificity was higher than that of IC.


Subject(s)
Benzodiazepines , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Humans , Spectrometry, Mass, Electrospray Ionization/methods , Benzodiazepines/blood , Benzodiazepines/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Substance Abuse Detection/methods , Reproducibility of Results , Limit of Detection
2.
J Anal Toxicol ; 47(1): 89-95, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-35642751

ABSTRACT

Metformin (MtF) is a treatment used for type 2 diabetes. Lactic acidosis (LA) is a frequent complication that can be either induced by or associated with elevated MtF plasma concentrations. When coupled with a mass spectrometry (MS) system, the probe electrospray ionization (PESI) method allows direct and rapid analysis of different types of matrices without pretreatment. In this study, we developed a PESI-MS method for the determination of MtF in plasma. We used a tandem mass spectrometer equipped with a PESI source in the reaction monitoring mode for the quantitation of MtF. MtF-d6 was chosen as the internal standard (IS), following an isotope dilution (ID) approach. The method was fully validated with six concentration levels (0.5-50 mg/L). The matrix effect was evaluated for each level, and the specificity was tested with a mix of potential co-medications. Using patient samples, the performance was compared with two classical LC-MS-MS and LC-diode array detector (DAD) methods used in external labs. Sample preparation consisted in mixing 10 µL plasma in 1,000 µL ethanol/ammonium formate buffer including MtF-d6 at a fixed concentration of 5 mg/L. The total run time was 0.31 min. ID gave satisfactory results of accuracy and precision (min-max: -12.1 to 15.8% and 1.0-17.1%, respectively). The matrix effect was fully corrected by the internal standard (bias < 1%). The specificity study also reported satisfactory results. Finally, in a representative group of 29 patients (55% with a concentration <5 mg/L, 38% with a concentration >5 mg/L and 7% not detected), we observed almost identical results when comparing LC-DAD and LC-MS-MS to PESI-MS (r2 > 0.99). We propose a specific, sensitive, accurate and ultrafast solution for the measurement of MtF in patient plasma, with no sample preparation or calibration curve building. This could be helpful in a core lab when rapid diagnosis of LA is needed.


Subject(s)
Diabetes Mellitus, Type 2 , Metformin , Humans , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry/methods , Indicator Dilution Techniques , Reproducibility of Results , Chromatography, High Pressure Liquid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...