Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38165394

ABSTRACT

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Subject(s)
COVID-19 , Pre-Exposure Prophylaxis , Animals , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Viral , Antibodies, Monoclonal , Macaca fascicularis , DNA , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
2.
J Infect Dis ; 228(Suppl 7): S721-S729, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37474155

ABSTRACT

Vesicular stomatitis virus-Ebola virus (VSV-EBOV) vaccine has been successfully used in ring vaccination approaches during EBOV disease outbreaks demonstrating its general benefit in short-term prophylactic vaccination, but actual proof of its benefit in true postexposure prophylaxis (PEP) for humans is missing. Animal studies have indicated PEP efficacy when VSV-EBOV was used within hours of lethal EBOV challenge. Here, we used a lower EBOV challenge dose and a combined intravenous and intramuscular VSV-EBOV administration to improve PEP efficacy in the rhesus macaque model. VSV-EBOV treatment 1 hour after EBOV challenge resulted in delayed disease progression but little benefit in outcome. Thus, we could not confirm previous results indicating questionable benefit of VSV-EBOV for EBOV PEP in a nonhuman primate model.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Humans , Animals , Macaca mulatta , Vesiculovirus , Vesicular stomatitis Indiana virus
3.
mBio ; 14(2): e0360622, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36809119

ABSTRACT

Powassan infection is caused by two closely related, tick-transmitted viruses of the genus Flavivirus (family Flaviviridae): Powassan virus lineage I (POWV) and lineage II (known as deer tick virus [DTV]). Infection is typically asymptomatic or mild but can progress to neuroinvasive disease. Approximately 10% of neuroinvasive cases are fatal, and half of the survivors experience long-term neurological sequelae. Understanding how these viruses cause long-term symptoms as well as the possible role of viral persistence is important for developing therapies. We intraperitoneally inoculated 6-week-old C57BL/6 mice (50% female) with 103 focus-forming units (FFU) DTV and assayed for infectious virus, viral RNA, and inflammation during acute infection and 21, 56, and 84 days postinfection (dpi). Although most mice (86%) were viremic 3 dpi, only 21% of the mice were symptomatic and 83% recovered. Infectious virus was detected only in the brains of mice sampled during the acute infection. Viral RNA was detected in the brain until 84 dpi, but the magnitude decreased over time. Meningitis and encephalitis were visible in acute mice and from mice sampled at 21 dpi. Inflammation was observed until 56 dpi in the brain and 84 dpi in the spinal cord, albeit at low levels. These results suggest that the long-term neurological symptoms associated with Powassan disease are likely caused by lingering viral RNA and chronic inflammation in the central nervous system rather than by a persistent, active viral infection. The C57BL/6 model of persistent Powassan mimics illness in humans and can be used to study the mechanisms of chronic disease. IMPORTANCE Half of Powassan infection survivors experience long-term, mild to severe neurological symptoms. The progression from acute to chronic Powassan disease is not well understood, severely limiting treatment and prevention options. Infection of C57BL/6 mice with DTV mimics clinical disease in humans, and the mice exhibit CNS inflammation and viral RNA persistence until at least 86 dpi, while infectious virus is undetectable after 12 dpi. These findings suggest that the long-term neurological symptoms of chronic Powassan disease are in part due the persistence of viral RNA and the corresponding long-term inflammation of the brain and spinal cord. Our work demonstrates that C57BL/6 mice can be used to study the pathogenesis of chronic Powassan disease.


Subject(s)
Encephalitis, Tick-Borne , Humans , Female , Animals , Mice , Male , Mice, Inbred C57BL , Brain/pathology , Inflammation , RNA, Viral
4.
Sci Rep ; 12(1): 3954, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273264

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 SARS-CoV-2 isolate had detectable but limited neutralizing antibodies against the emerging SARS-CoV-2 Alpha, Beta and Delta variants. This study highlights the potential of re-infection for recovered COVID-19 patients.


Subject(s)
Broadly Neutralizing Antibodies/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Chemokines/blood , Cytokines/blood , Female , Humans , Male , Middle Aged , Patient Acuity , Young Adult
5.
mBio ; 13(1): e0337921, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35012339

ABSTRACT

The ongoing pandemic of coronavirus (CoV) disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome CoV 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single-dose, fast-acting vesicular stomatitis virus (VSV)-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (i.m.) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (i.n.) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to results for control animals. While both i.m. and i.n. vaccination induced neutralizing antibody titers, only i.m. vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of i.m. vaccinated animals only. Overall, the data demonstrate that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. IMPORTANCE The vesicular stomatitis virus (VSV) vaccine platform rose to fame in 2019, when a VSV-based Ebola virus (EBOV) vaccine was approved by the European Medicines Agency and the U.S. Food and Drug Administration for human use against the deadly disease. Here, we demonstrate the protective efficacy of a VSV-EBOV-based COVID-19 vaccine against challenge in nonhuman primates (NHPs). When a single dose of the VSV-SARS2-EBOV vaccine was administered intramuscularly (i.m.), the NHPs were protected from COVID-19 within 10 days. In contrast, if the vaccine was administered intranasally, there was no benefit from the vaccine and the NHPs developed pneumonia. The i.m. vaccinated NHPs quickly developed antigen-specific IgG, including neutralizing antibodies. Transcriptional analysis highlighted the development of protective innate and adaptive immune responses in the i.m. vaccination group only.


Subject(s)
COVID-19 Vaccines , COVID-19 , Ebola Vaccines , Ebolavirus , Macaca mulatta , Vesicular Stomatitis , Animals , Antibodies, Viral/genetics , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Ebola Vaccines/genetics , Ebola Vaccines/immunology , Ebola Vaccines/therapeutic use , Ebolavirus/genetics , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/genetics , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Macaca mulatta/immunology , SARS-CoV-2 , Vaccination/methods , Vesicular Stomatitis/genetics , Vesicular Stomatitis/immunology , Vesicular Stomatitis/prevention & control , Vesiculovirus/genetics
6.
bioRxiv ; 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34790978

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in a variety of clinical symptoms ranging from no or mild to severe disease. Currently, there are multiple postulated mechanisms that may push a moderate to severe disease into a critical state. Human serum contains abundant evidence of the immune status following infection. Cytokines, chemokines, and antibodies can be assayed to determine the extent to which a patient responded to a pathogen. We examined serum and plasma from a cohort of patients infected with SARS-CoV-2 early in the pandemic and compared them to negative-control sera. Cytokine and chemokine concentrations varied depending on the severity of infection, and antibody responses were significantly increased in severe cases compared to mild to moderate infections. Neutralization data revealed that patients with high titers against an early 2020 isolate had detectable but limited neutralizing antibodies against newly circulating SARS-CoV-2 variants of concern. This study highlights the potential of re-infection for recovered COVID-19 patients.

7.
bioRxiv ; 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34518839

ABSTRACT

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need the for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8 + T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4 + T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.

8.
Emerg Microbes Infect ; 10(1): 1077-1087, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34013842

ABSTRACT

ABSTRACTAlkhurma haemorrhagic fever virus (AHFV), a tick-borne flavivirus closely related to Kyasanur Forest disease virus, is the causative agent of a severe, sometimes fatal haemorrhagic/encephalitic disease in humans. To date, there are no specific treatments or vaccines available to combat AHFV infections. A challenge for the development of countermeasures is the absence of a reliable AHFV animal disease model for efficacy testing. Here, we used mice lacking the type I interferon (IFN) receptor (IFNAR-/-). AHFV strains Zaki-2 and 2003 both caused uniform lethality in these mice after intraperitoneal injection, but strain 2003 seemed more virulent with a median lethal dose of 0.4 median tissue culture infectious doses (TCID50). Disease manifestation in this animal model was similar to case reports of severe human AHFV infections with early generalized signs leading to haemorrhagic and neurologic complications. AHFV infection resulted in early high viremia followed by high viral loads (<108 TCID50/g tissue) in all analyzed organs. Despite systemic viral replication, virus-induced pathology was mainly found in the spleen, lymph nodes, liver and heart. This uniformly lethal AHFV disease model will be instrumental for pathogenesis studies and countermeasure development against this neglected zoonotic pathogen.


Subject(s)
Encephalitis Viruses, Tick-Borne/pathogenicity , Encephalitis, Tick-Borne/mortality , Receptor, Interferon alpha-beta/genetics , Animals , Chlorocebus aethiops , Disease Models, Animal , Encephalitis, Tick-Borne/genetics , Encephalitis, Tick-Borne/pathology , Encephalitis, Tick-Borne/virology , Female , Gene Knockout Techniques , Humans , Male , Mice , Vero Cells , Viral Load
9.
bioRxiv ; 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33501447

ABSTRACT

The ongoing pandemic of Coronavirus disease 2019 (COVID-19) continues to exert a significant burden on health care systems worldwide. With limited treatments available, vaccination remains an effective strategy to counter transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent discussions concerning vaccination strategies have focused on identifying vaccine platforms, number of doses, route of administration, and time to reach peak immunity against SARS-CoV-2. Here, we generated a single dose, fast-acting vesicular stomatitis virus-based vaccine derived from the licensed Ebola virus (EBOV) vaccine rVSV-ZEBOV, expressing the SARS-CoV-2 spike protein and the EBOV glycoprotein (VSV-SARS2-EBOV). Rhesus macaques vaccinated intramuscularly (IM) with a single dose of VSV-SARS2-EBOV were protected within 10 days and did not show signs of COVID-19 pneumonia. In contrast, intranasal (IN) vaccination resulted in limited immunogenicity and enhanced COVID-19 pneumonia compared to control animals. While IM and IN vaccination both induced neutralizing antibody titers, only IM vaccination resulted in a significant cellular immune response. RNA sequencing data bolstered these results by revealing robust activation of the innate and adaptive immune transcriptional signatures in the lungs of IM-vaccinated animals only. Overall, the data demonstrates that VSV-SARS2-EBOV is a potent single-dose COVID-19 vaccine candidate that offers rapid protection based on the protective efficacy observed in our study. ONE SENTENCE SUMMARY: VSV vaccine protects NHPs from COVID-19 in 10 days.

10.
Front Immunol ; 12: 788235, 2021.
Article in English | MEDLINE | ID: mdl-35069564

ABSTRACT

The ongoing COVID-19 pandemic has resulted in global effects on human health, economic stability, and social norms. The emergence of viral variants raises concerns about the efficacy of existing vaccines and highlights the continued need for the development of efficient, fast-acting, and cost-effective vaccines. Here, we demonstrate the immunogenicity and protective efficacy of two vesicular stomatitis virus (VSV)-based vaccines encoding the SARS-CoV-2 spike protein either alone (VSV-SARS2) or in combination with the Ebola virus glycoprotein (VSV-SARS2-EBOV). Intranasally vaccinated hamsters showed an early CD8+ T cell response in the lungs and a greater antigen-specific IgG response, while intramuscularly vaccinated hamsters had an early CD4+ T cell and NK cell response. Intranasal vaccination resulted in protection within 10 days with hamsters not showing clinical signs of pneumonia when challenged with three different SARS-CoV-2 variants. This data demonstrates that VSV-based vaccines are viable single-dose, fast-acting vaccine candidates that are protective from COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Ebolavirus/immunology , Pandemics/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vesicular stomatitis Indiana virus/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Ebolavirus/genetics , Female , Humans , Immunogenicity, Vaccine , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Plasmids , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Treatment Outcome , Vero Cells , Vesicular stomatitis Indiana virus/genetics
11.
J Immunol ; 196(10): 4227-36, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27029588

ABSTRACT

A shift in macrophage metabolism from oxidative phosphorylation to aerobic glycolysis is a requirement for activation to effectively combat invading pathogens. Francisella tularensis is a facultative intracellular bacterium that causes an acute, fatal disease called tularemia. Its primary mechanism of virulence is its ability to evade and suppress inflammatory responses while replicating in the cytosol of macrophages. The means by which F. tularensis modulates macrophage activation are not fully elucidated. In this study, we demonstrate that virulent F. tularensis impairs production of inflammatory cytokines in primary macrophages by preventing their shift to aerobic glycolysis, as evidenced by the downregulation of hypoxia inducible factor 1α and failure to upregulate pfkfb3 We also show that Francisella capsule is required for this process. In addition to modulating inflammatory responses, inhibition of glycolysis in host cells is also required for early replication of virulent Francisella Taken together, our data demonstrate that metabolic reprogramming of host cells by F. tularensis is a key component of both inhibition of host defense mechanisms and replication of the bacterium.


Subject(s)
Bacterial Capsules/immunology , Cellular Reprogramming , Francisella tularensis/pathogenicity , Inflammation/immunology , Macrophages/immunology , Animals , Cytokines/immunology , Down-Regulation , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Macrophage Activation , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Phosphofructokinase-2/metabolism , Tularemia/immunology , Virulence
12.
Clin Vaccine Immunol ; 22(1): 119-28, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25410207

ABSTRACT

Francisella tularensis is an intracellular, Gram-negative bacterium that causes the fatal disease tularemia. Currently, there are no licensed vaccines for tularemia and the requirements for protection against infection are poorly defined. To identify correlates of vaccine-induced immunity against tularemia, we compared different strains of the live vaccine strain (LVS) for their relative levels of virulence and ability to protect C57BL/6 mice against challenge with virulent F. tularensis strain SchuS4. Successful vaccination, as defined by survival of C57BL/6 mice, was correlated with significantly greater numbers of effector T cells in the spleen and lung. Further, lung cells and splenocytes from fully protected animals were more effective than lung cells and splenocytes from vaccinated but nonimmune animals in limiting intracellular replication of SchuS4 in vitro. Together, our data provide a unique model to compare efficacious vaccines to nonefficacious vaccines, which will enable comprehensive identification of host and bacterial components required for immunization against tularemia.


Subject(s)
Bacterial Vaccines/immunology , Francisella tularensis/immunology , T-Lymphocytes/immunology , Tularemia/immunology , Tularemia/prevention & control , Animals , Bacterial Vaccines/administration & dosage , Disease Models, Animal , Female , Francisella tularensis/growth & development , Mice, Inbred C57BL , Spleen/immunology , Survival Analysis
13.
PLoS One ; 8(12): e82096, 2013.
Article in English | MEDLINE | ID: mdl-24324751

ABSTRACT

Virulent Francisella tularensis ssp tularensis is an intracellular, Gram negative bacterium that causes acute lethal disease following inhalation of fewer than 15 organisms. Pathogenicity of Francisella infections is tied to its unique ability to evade and suppress inflammatory responses in host cells. It has been proposed that induction of alternative activation of infected macrophages is a mechanism by which attenuated Francisella species modulate host responses. In this report we reveal that neither attenuated F. tularensis Live Vaccine Strain (LVS) nor virulent F. tularensis strain SchuS4 induce alternative activation of macrophages in vitro or in vivo. LVS, but not SchuS4, provoked production of arginase1 independent of alternative activation in vitro and in vivo. However, absence of arginase1 did not significantly impact intracellular replication of LVS or SchuS4. Together our data establish that neither induction of alternative activation nor expression of arginase1 are critical features of disease mediated by attenuated or virulent Francisella species.


Subject(s)
Arginase/biosynthesis , Francisella tularensis/physiology , Macrophage Activation , Macrophages/enzymology , Macrophages/microbiology , Animals , Cytokines/metabolism , Enzyme Induction , Francisella tularensis/growth & development , Francisella tularensis/pathogenicity , Lung/immunology , Lung/microbiology , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Tularemia/immunology , Tularemia/microbiology , Tularemia/prevention & control , Vaccines, Attenuated/immunology
14.
J Immunol ; 190(6): 2756-66, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23378429

ABSTRACT

B1a cells are an important source of natural Abs, Abs directed against T-independent Ags, and are a primary source of IL-10. Bruton's tyrosine kinase (btk) is a cytoplasmic kinase that is essential for mediating signals from the BCR and is critical for development of B1a cells. Consequentially, animals lacking btk have few B1a cells, minimal Ab responses, and can preferentially generate Th1-type immune responses following infection. B1a cells have been shown to aid in protection against infection with attenuated Francisella tularensis, but their role in infection mediated by fully virulent F. tularensis is not known. Therefore, we used mice with defective btk (CBA/CaHN-Btk(XID)/J [XID mice]) to determine the contribution of B1a cells in defense against the virulent F. tularensis ssp. tularensis strain SchuS4. Surprisingly, XID mice displayed increased resistance to pulmonary infection with F. tularensis. Specifically, XID mice had enhanced clearance of bacteria from the lung and spleen and significantly greater survival of infection compared with wild-type controls. We revealed that resistance to infection in XID mice was associated with decreased numbers of IL-10-producing B1a cells and concomitant increased numbers of IL-12-producing macrophages and IFN-γ-producing NK/NKT cells. Adoptive transfer of wild-type B1a cells into XID mice reversed the control of bacterial replication. Similarly, depletion of NK/NKT cells also increased bacterial burdens in XID mice. Together, our data suggest B cell-NK/NKT cell cross-talk is a critical pivot controlling survival of infection with virulent F. tularensis.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/microbiology , Francisella tularensis/immunology , Genetic Predisposition to Disease , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , Animals , Antibodies, Bacterial/biosynthesis , B-Lymphocyte Subsets/transplantation , Cell Communication/genetics , Cell Communication/immunology , Cells, Cultured , Exudates and Transudates/microbiology , Francisella tularensis/genetics , Francisella tularensis/pathogenicity , Killer Cells, Natural/microbiology , Killer Cells, Natural/pathology , Mice , Mice, Inbred CBA , Mice, Mutant Strains , Natural Killer T-Cells/microbiology , Natural Killer T-Cells/pathology , Peritoneum/immunology , Peritoneum/microbiology , Peritoneum/pathology , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/physiology , Survival Analysis , Th1 Cells/immunology , Th1 Cells/metabolism , Th1 Cells/microbiology , Tularemia/immunology , Tularemia/mortality , Tularemia/pathology , Virulence/genetics , Virulence/immunology
15.
Vaccine ; 29(15): 2697-704, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21315116

ABSTRACT

The administration of live attenuated Salmonella strains has proven to be an effective way to generate protective immunity against Salmonella infection in humans and mice. Studies in the mouse model have shown that protection requires Salmonella-specific Th1 cells, however the timing and stimulatory requirements for generating optimal Th1 responses have not been carefully examined. We used antibiotic interruption of vaccination with live attenuated Salmonella to examine the requirements for Salmonella-specific Th1 development and protective immunity. Optimal development of protective immunity to Salmonella infection required at least one week of exposure to the live attenuated Salmonella strain. In contrast, optimal development of Salmonella-specific Th1 cells required two weeks of in vivo colonization. Thus, sustained in vivo stimulation with a live vaccine strain is essential for the development of robust Salmonella-specific Th1 cells.


Subject(s)
Antigens, Bacterial/immunology , Salmonella Vaccines/immunology , Salmonella/immunology , Th1 Cells/immunology , Animals , Anti-Bacterial Agents/administration & dosage , Mice , Mice, Inbred C57BL , Time Factors , Vaccination/methods , Vaccines, Attenuated/immunology
16.
Infect Immun ; 79(4): 1479-88, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21263018

ABSTRACT

Enteric pathogens can cause relapsing infections in a proportion of treated patients, but greater understanding of this phenomenon is hindered by the lack of appropriate animal models. We report here a robust animal model of relapsing primary typhoid that initiates after apparently successful antibiotic treatment of susceptible mice. Four days of enrofloxacin treatment were sufficient to reduce bacterial loads below detectable levels in all major organs, and mice appeared otherwise healthy. However, any interruption of further antibiotic therapy allowed renewed fecal shedding and renewed bacterial growth in systemic tissues to occur, and mice eventually succumbed to relapsing infection. In vivo imaging of luminescent Salmonella identified the mesenteric lymph nodes (MLNs) as a major reservoir of relapsing infection. A magnetic-bead enrichment strategy isolated MLN-resident CD11b(+) Gr-1(-) monocytes associated with low numbers of persistent Salmonella. However, the removal of MLNs increased the severity of typhoid relapse, demonstrating that this organ serves as a protective filter to restrain the dissemination of bacteria during antibiotic therapy. Together, these data describe a robust animal model of typhoid relapse and identify an important intestinal phagocyte subset involved in protection against the systemic spread of enteric infection.


Subject(s)
Lymph Nodes/microbiology , Monocytes/microbiology , Salmonella Infections, Animal/microbiology , Animals , Anti-Bacterial Agents/therapeutic use , Cell Separation , Disease Models, Animal , Enrofloxacin , Flow Cytometry , Fluoroquinolones/therapeutic use , Intestine, Small/microbiology , Mesentery/immunology , Mesentery/microbiology , Mice , Mice, Inbred C57BL , Monocytes/immunology , Recurrence , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/pathology , Salmonella typhi/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...