Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 26(2): 350-364, 2023 02.
Article in English | MEDLINE | ID: mdl-36550293

ABSTRACT

Identification of structural connections between neurons is a prerequisite to understanding brain function. Here we developed a pipeline to systematically map brain-wide monosynaptic input connections to genetically defined neuronal populations using an optimized rabies tracing system. We used mouse visual cortex as the exemplar system and revealed quantitative target-specific, layer-specific and cell-class-specific differences in its presynaptic connectomes. The retrograde connectivity indicates the presence of ventral and dorsal visual streams and further reveals topographically organized and continuously varying subnetworks mediated by different higher visual areas. The visual cortex hierarchy can be derived from intracortical feedforward and feedback pathways mediated by upper-layer and lower-layer input neurons. We also identify a new role for layer 6 neurons in mediating reciprocal interhemispheric connections. This study expands our knowledge of the visual system connectomes and demonstrates that the pipeline can be scaled up to dissect connectivity of different cell populations across the mouse brain.


Subject(s)
Connectome , Visual Cortex , Mice , Animals , Neurons/physiology , Brain/physiology , Visual Cortex/physiology , Visual Pathways
2.
Mol Psychiatry ; 27(3): 1792-1804, 2022 03.
Article in English | MEDLINE | ID: mdl-35046525

ABSTRACT

Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis (UC), irritable bowel syndrome (IBS), and healthy controls (HC), N = 74 each) to investigate the alterations in functional brain wiring and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention, somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures. None of the observed brain changes were correlated with disease duration. Together, these findings are consistent with compromised functioning of networks involved in executive function and sensory integration in UC.


Subject(s)
Colitis, Ulcerative , Connectome , Irritable Bowel Syndrome , Brain , Colitis, Ulcerative/complications , Humans , Inflammation/complications , Irritable Bowel Syndrome/complications
3.
eNeuro ; 9(1)2022.
Article in English | MEDLINE | ID: mdl-35022186

ABSTRACT

Despite significant progress in understanding neural coding, it remains unclear how the coordinated activity of large populations of neurons relates to what an observer actually perceives. Since neurophysiological differences must underlie differences among percepts, differentiation analysis-quantifying distinct patterns of neurophysiological activity-has been proposed as an "inside-out" approach that addresses this question. This methodology contrasts with "outside-in" approaches such as feature tuning and decoding analyses, which are defined in terms of extrinsic experimental variables. Here, we used two-photon calcium imaging in mice of both sexes to systematically survey stimulus-evoked neurophysiological differentiation (ND) in excitatory neuronal populations in layers (L)2/3, L4, and L5 across five visual cortical areas (primary, lateromedial, anterolateral, posteromedial, and anteromedial) in response to naturalistic and phase-scrambled movie stimuli. We find that unscrambled stimuli evoke greater ND than scrambled stimuli specifically in L2/3 of the anterolateral and anteromedial areas, and that this effect is modulated by arousal state and locomotion. By contrast, decoding performance was far above chance and did not vary substantially across areas and layers. Differentiation also differed within the unscrambled stimulus set, suggesting that differentiation analysis may be used to probe the ethological relevance of individual stimuli.


Subject(s)
Visual Cortex , Animals , Female , Locomotion/physiology , Male , Mice , Neurons/physiology , Neurophysiology , Photic Stimulation , Visual Cortex/physiology
4.
eNeuro ; 9(5)2022.
Article in English | MEDLINE | ID: mdl-36635937

ABSTRACT

Multiple recent studies have shown that motor activity greatly impacts the activity of primary sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still unclear. Here, we dissect how these behavior signals are broadcast to different layers and areas of the visual cortex. To do so, we leveraged a standardized and spontaneous behavioral fidget event in passively viewing mice. Importantly, this behavior event had no relevance to any ongoing task allowing us to compare its neuronal correlates with visually relevant behaviors (e.g., running). A large two-photon Ca2+ imaging database of neuronal responses uncovered four neural response types during fidgets that were consistent in their proportion and response patterns across all visual areas and layers of the visual cortex. Indeed, the layer and area identity could not be decoded above chance level based only on neuronal recordings. In contrast to running behavior, fidget evoked neural responses that were independent to visual processing. The broad availability of visually orthogonal standardized behavior signals could be a key component in how the cortex selects, learns and binds local sensory information with motor outputs. Contrary to behaviorally relevant motor outputs, irrelevant motor signals could project to separate local neural subspaces.


Subject(s)
Visual Cortex , Visual Perception , Animals , Mice , Visual Perception/physiology , Neurons/physiology , Visual Cortex/physiology , Photic Stimulation/methods
5.
Nat Neurosci ; 23(1): 138-151, 2020 01.
Article in English | MEDLINE | ID: mdl-31844315

ABSTRACT

To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes the cortical activity of nearly 60,000 neurons from six visual areas, four layers, and 12 transgenic mouse lines in a total of 243 adult mice, in response to a systematic set of visual stimuli. We classify neurons on the basis of joint reliabilities to multiple stimuli and validate this functional classification with models of visual responses. While most classes are characterized by responses to specific subsets of the stimuli, the largest class is not reliably responsive to any of the stimuli and becomes progressively larger in higher visual areas. These classes reveal a functional organization wherein putative dorsal areas show specialization for visual motion signals.


Subject(s)
Visual Cortex/anatomy & histology , Visual Cortex/physiology , Animals , Datasets as Topic , Mice
6.
PLoS One ; 14(5): e0213924, 2019.
Article in English | MEDLINE | ID: mdl-31042712

ABSTRACT

Visual cortex is organized into discrete sub-regions or areas that are arranged into a hierarchy and serves different functions in the processing of visual information. In retinotopic maps of mouse cortex, there appear to be substantial mouse-to-mouse differences in visual area location, size and shape. Here we quantify the biological variation in the size, shape and locations of 11 visual areas in the mouse, after separating biological variation and measurement noise. We find that there is biological variation in the locations and sizes of visual areas.


Subject(s)
Visual Cortex/anatomy & histology , Animals , Brain Mapping , Male , Mice , Visual Cortex/physiology , Visual Pathways/physiology
7.
Int J Radiat Biol ; 94(5): 472-477, 2018 05.
Article in English | MEDLINE | ID: mdl-29521142

ABSTRACT

Melatonin is an endogenous hormone primarily known for its action on the circadian rhythms. But pre-clinical studies are reporting both its radioprotective and radiosensitizing properties, possibly mediated through an interaction between melatonin and the regulation of estrogens. Melatonin pre-treatment prior to ionizing radiation was associated with a decrease in cell proliferation and an increase in p53 mRNA expression, leading to an increase in the radiosensitivity of breast cancer cells. At the same time, a decrease in radiation-induced side effects was described in breast cancer patients and in rodent models. This review examines the potential for melatonin to improve the therapeutic outcomes of breast radiation therapy, specifically estrogen receptor positive patients. Evidence suggests that melatonin may offer a novel, non-toxic and cheap adjuvant therapy to improve the existing treatment modalities. But further research is required in the clinical setting before a clear understanding of its therapeutic benefits is determined.


Subject(s)
Breast Neoplasms/radiotherapy , Melatonin/therapeutic use , Radiation-Protective Agents/therapeutic use , Radiotherapy/adverse effects , Animals , Dose-Response Relationship, Radiation , Estrogen Receptor alpha/metabolism , Female , Humans , MCF-7 Cells , Mice , Neoplasm Metastasis , Quality of Life , RNA, Messenger/metabolism , Radiation Tolerance , Radiation-Sensitizing Agents/therapeutic use , Tumor Suppressor Protein p53/metabolism
8.
Elife ; 62017 11 09.
Article in English | MEDLINE | ID: mdl-29120328

ABSTRACT

As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer's disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia.


Subject(s)
Aging/pathology , Cerebral Cortex/pathology , Gene Expression Profiling , Hippocampus/pathology , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Dementia/pathology , Female , Humans , Male
9.
eNeuro ; 4(5)2017.
Article in English | MEDLINE | ID: mdl-28932809

ABSTRACT

Transgenic mouse lines are invaluable tools for neuroscience but, as with any technique, care must be taken to ensure that the tool itself does not unduly affect the system under study. Here we report aberrant electrical activity, similar to interictal spikes, and accompanying fluorescence events in some genotypes of transgenic mice expressing GCaMP6 genetically encoded calcium sensors. These epileptiform events have been observed particularly, but not exclusively, in mice with Emx1-Cre and Ai93 transgenes, of either sex, across multiple laboratories. The events occur at >0.1 Hz, are very large in amplitude (>1.0 mV local field potentials, >10% df/f widefield imaging signals), and typically cover large regions of cortex. Many properties of neuronal responses and behavior seem normal despite these events, although rare subjects exhibit overt generalized seizures. The underlying mechanisms of this phenomenon remain unclear, but we speculate about possible causes on the basis of diverse observations. We encourage researchers to be aware of these activity patterns while interpreting neuronal recordings from affected mouse lines and when considering which lines to study.


Subject(s)
Calcium/metabolism , Cerebral Cortex/physiopathology , Epilepsy , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Neurons/physiology , Animals , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Disease Models, Animal , Doxycycline/pharmacology , Epilepsy/genetics , Epilepsy/pathology , Epilepsy/physiopathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Integrases , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...