Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
JBMR Plus ; 5(9): e10523, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34532612

ABSTRACT

Atypical femur fractures (AFFs) are well-established serious complication of long-term bisphosphonate and denosumab therapy in patients with osteopenia or osteoporosis. To elucidate underlying mechanism(s) for the development of AFF, we performed a nested case-control study to investigate bone tissue nanomechanical properties and prevailing bone microstructure and tissue-level remodeling status as assessed by bone histomorphometry. We hypothesized that there would be differences in nanomechanical properties between patients with and without AFF and that bone microstructure and remodeling would be related to nanomechanical properties. Thirty-two full-thickness transiliac bone biopsies were obtained from age- and sex-matched patients on long-term bisphosphonate therapy with (n = 16) and without an AFF (n = 16). Standard histomorphometric measurements were made in each sample on three different bone envelopes (cancellous, intracortical, and endosteal). Iliac bone wall thickness was significantly lower on all three bone surfaces in patients with AFF than in those without AFF. Surface-based bone formation rate was suppressed similarly in both groups in comparison to healthy premenopausal and postmenopausal women, with no significant difference between the two groups. Nanoindentation was used to assess material properties of cortical and cancellous bone separately. Elastic modulus was higher in cortical than in cancellous bone in patients with AFF as well as compared to the elastic modulus of cortical bone from non-AFF patients. However, the elastic modulus of the cancellous bone was not different between AFF and non-AFF groups or between cortical and cancellous bone of non-AFF patients. Resistance to plastic deformation was decreased in cortical bone in both AFF and non-AFF groups compared to cancellous bone, but to a greater extent in AFF patients. We conclude that long-term bisphosphonate therapy is associated with prolonged suppression of bone turnover resulting in altered cortical remodeling and tissue nanomechanical properties leading to AFF. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

2.
J Spec Oper Med ; 18(1): 47-52, 2018.
Article in English | MEDLINE | ID: mdl-29533433

ABSTRACT

BACKGROUND: To develop knowledge of mechanical control of bleeding in first aid, a laboratory model was set up to simulate flow through a blood vessel. A collapsible tube was used to mimic an artery in two experiments to determine (1) the extent of volumetric flow reduction caused by increases in the degree of compression of the vessel and (2) the extent of flow reduction caused by increases in the length of compression. METHODS: Water was used in vertical tubing. Gravity applied a pressure gradient of about 100mmHg to cause flow. A silicone tube (10mm-diameter lumen [the inner opening], 1mm-thick wall, 150mm length) was used. Tests of no compression of the external wall constituted the control group for both experiments. For all groups, flow volume was sampled over a period of time, and six samples were averaged. In both experiments, the study group consisted of tests with compression that was measured as the reduced area of the luminal cross section. In the first experiment, six groups with luminal area reductions of 0% (control), 74%, 81%, 91%, 94%, and 97% were tested. In the second experiment at 74% luminal area reduction, the three lengths of compression were 5mm, 20mm, and 70mm. The measured data were compared with calculated data by applying established mathematical equations. RESULTS: In the first experiment, flow decreased with decreasing area due to luminal compression, but the association was a parabolic curve such that 94% or greater reduction in luminal area was required to reduce flow by greater than 50%. A reduction in luminal area of 97% reduced flow by 95%. In the second experiment, mean flow rates were not significantly different among the three lengths of compression. Measured data and calculated data were in good agreement. CONCLUSIONS: Compared with an uncompressed vessel, volumetric flow of water through a single, unsupported collapsible tube in steady, nonpulsatile conditions with compression applied to its external wall to produce a reduction in luminal area of 97% reduced flow by 95%. Flow was affected by the degree of compression but not by the length of compression.


Subject(s)
Hemorrhage/therapy , Hydrodynamics , Models, Cardiovascular , Stress, Mechanical , Catheters , Hydrostatic Pressure , Rheology , Water
3.
Med Sci Law ; 57(2): 61-68, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28372525

ABSTRACT

Background Fatalities from acute compression have been reported with soft-drink vending machine tipping, motor vehicle accidents, and trench cave-ins. A major mechanism of such deaths is flail chest but the amount of force required is unclear. Between the range of a safe static chest compression force of 1000 N (102 kg with earth gravity) and a lethal dynamic force of 10-20 kN (falling 450 kg vending machines), there are limited quantitative human data on the force required to cause flail chest, which is a major correlate of acute fatal compression asphyxia. Methods We modeled flail chest as bilateral fractures of six adjacent ribs. The static and dynamic forces required to cause such a ribcage failure were estimated using a biomechanical model of the thorax. The results were then compared with published historical records of judicial "pressing," vending machine fatalities, and automobile safety cadaver testing. Results and conclusion The modeling results suggest that an adult male requires 2550 ± 250 N of chest-applied distributed static force (260 ± 26 kg with earth gravity) or 4050 ± 320 N of dynamic force to cause flail chest from short-term chest compression.


Subject(s)
Asphyxia/etiology , Crush Injuries , Death , Flail Chest/etiology , Algorithms , Biomechanical Phenomena/physiology , Cadaver , Female , Humans , Male , Models, Anatomic
4.
J Orthop Surg Res ; 4: 11, 2009 Apr 16.
Article in English | MEDLINE | ID: mdl-19371438

ABSTRACT

BACKGROUND: Premature failure of either the nail and/or locking screws with unstable fracture patterns may lead to angulation, shortening, malunion, and IM nail migration. Up to thirty percent of all unreamed nail locking screws can break after initial weight bearing is allowed at 8-10 weeks if union has not occurred. The primary problem this presents is hardware removal during revision surgery. The purposes of our study was to evaluate the relative fatigue resistance of distal locking screws and bolts from representative manufacturers of tibial IM nail systems, and develop a relative risk assessment of screws and materials used. Evaluations included quantitative and qualitative measures of the relative performance of these screws. METHODS: Fatigue tests were conducted to simulate a comminuted fracture that was treated by IM nailing assuming that all load was carried by the screws. Each screw type was tested ten times in a single screw configuration. One screw type was tested an additional ten times in a two-screw parallel configuration. Fatigue tests were performed using a servohydraulic materials testing system and custom fixturing that simulated screws placed in the distal region of an appropriately sized tibial IM nail. Fatigue loads were estimated based on a seventy-five kilogram individual at full weight bearing. The test duration was one million cycles (roughly one year), or screw fracture, whichever occurred first. Failure analysis of a representative sample of titanium alloy and stainless steel screws included scanning electron microscopy (SEM) and quantitative metallography. RESULTS: The average fatigue life of a single screw with a diameter of 4.0 mm was 1200 cycles, which would correspond roughly to half a day of full weight bearing. Single screws with a diameter of 4.5 mm or larger have approximately a 50 percent probability of withstanding a week of weight bearing, whereas a single 5.0 mm diameter screw has greater than 90 percent probability of withstanding more than a week of weight bearing. If two small diameter screws are used, our tests showed that the probability of withstanding a week of weight bearing increases from zero to about 20 percent, which is similar to having a single 4.5 mm diameter screw providing fixation. CONCLUSION: Our results show that selecting the system that uses the largest distal locking screws would offer the best fatigue resistance for an unstable fracture pattern subjected to full weight bearing. Furthermore, using multiple screws will substantially reduce the risk of premature hardware failure.

5.
J Cardiothorac Surg ; 3: 52, 2008 Sep 24.
Article in English | MEDLINE | ID: mdl-18816402

ABSTRACT

BACKGROUND: Failure of a sternotomy closure because of closure system fatigue is a complication that may result in dehiscence and put the individual at risk for serious complications. The purpose of this study was to assess the fatigue performance of three peristernal median sternotomy closure techniques (figure-of-eight stainless-steel wires, figure-of-eight stainless-steel cables, or Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates) in order to quantify the potential risk of fatigue failure of these devices when subject to cyclic loads in physiologically relevant loading directions. STUDY DESIGN: All tests were conducted on polyurethane foam sternal models. A cardiothoracic surgeon divided each sternal model longitudinally and repaired it with a closure device. Tests were performed using a materials testing system that applied cyclic loading in a uniaxial direction until the test model catastrophically broke or data run-out occurred. For each loading direction (lateral distraction and longitudinal shear), five trials of each closure technique were tested. Life data and location of device failure (if present) were evaluated. Statistical analysis was performed using regression with life data allowed for correlation between life data and the various closure techniques to develop risk assessment curves for each device. RESULTS: The data show that the figure-of-eight stainless-steel cable and the DSF plate systems are considerably less likely to fail under both lateral distraction and longitudinal shear cyclic loading conditions as compared to the figure-of-eight stainless-steel wire system. Moreover, the figure-of-eight stainless-steel cable system is the most resistant to failure, particularly for high cycle counts. CONCLUSION: This study in addition to Cohen and Griffin's earlier published biomechanical comparison of the ultimate strength of these same three closure techniques provide extensive experimental evidence regarding the mechanical differences among these three peristernal median sternotomy closure techniques. All data support the hypothesis that both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire closure techniques; although twisted wires are the weak-link in the systems we tested.


Subject(s)
Durable Medical Equipment , Models, Anatomic , Sternum/surgery , Suture Techniques/instrumentation , Thoracotomy/methods , Equipment Failure , Humans , Materials Testing/methods , Stress, Mechanical
6.
J Biomech ; 39(9): 1629-40, 2006.
Article in English | MEDLINE | ID: mdl-16019009

ABSTRACT

The interfacial strength of secondary osteons from the diaphysis of the Thoroughbred equine third metacarpal was evaluated using the fiber pushout test. The pushout was performed on 300-500 microm sections of 4x4x15 mm bone blocks machined from four anatomic regions of the cortex. Pushout strength was evaluated from proximal to distal location within the diaphysis on four osteon types classified under polarized light on adjacent histologic sections from each block. The shear strength of the interfaces were estimated from shear lag theory. Differences were found in the interfacial strength of osteons based on appearance under polarized light with bright field having the highest interfacial strength (40.3 MPa). The lowest strength was found in the dark field osteons (22.8 MPa). The dorsal region had the highest shear strength and toughness compared to all other regions. The cement line and interlamellar interfaces are similar in strength, but exhibit regional dependence--specifically, the palmar region strength is less (17.5 MPa) than the osteon interlamellar interfaces (30.4 MPa) and osteon type dependent (alternating significantly weaker than other types). Histomorphometry revealed significant regional differences (p<0.0001) in osteon area fraction among the four osteon types as well as differences in the osteon diameter (p=0.01), with dorsal regions having larger osteons (170 microm) than the palmar region (151 microm). Fatigue life and fracture toughness of Haversian bone are reported in the literature to be regionally dependent and are known to be associated with osteon pullout--an osteon interfacial phenomenon. Therefore, the results presented in this study are important to further the understanding of the mechanisms of fragility and damage accumulation in cortical bone.


Subject(s)
Haversian System/cytology , Haversian System/physiology , Horses , Animals , Microscopy, Electron, Scanning , Models, Biological , Stress, Mechanical , Tensile Strength
7.
Ann Thorac Surg ; 73(2): 563-8, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11845875

ABSTRACT

BACKGROUND: A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). METHODS: All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. RESULTS: Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. CONCLUSIONS: Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.


Subject(s)
Bone Plates , Bone Wires , Sternum/surgery , Suture Techniques/instrumentation , Biomechanical Phenomena , Humans , Models, Anatomic , Sternum/physiopathology , Surgical Wound Dehiscence/physiopathology , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...