Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2017): 20232016, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38378152

ABSTRACT

Migratory species trade-off long-distance movement with survival and reproduction, but the spatio-temporal scales at which these decisions occur are relatively unknown. Technological and statistical advances allow fine-scale study of animal decision-making, improving our understanding of possible causes and therefore conservation management. We quantified effects of reproductive preparation during spring migration on subsequent breeding outcomes, breeding outcomes on autumn migration characteristics and autumn migration characteristics on subsequent parental survival in Greenland white-fronted geese (Anser albifrons flavirostris). These are long-distance migratory birds with an approximately 50% population decline from 1999 to 2022. We deployed GPS-acceleration devices on adult females to quantify up to 5 years of individual decision-making throughout the annual cycle. Weather and habitat-use affected time spent feeding and overall dynamic body acceleration (i.e. energy expenditure) during spring and autumn. Geese that expended less energy and fed longer during spring were more likely to successfully reproduce. Geese with offspring expended more energy and fed for less time during autumn, potentially representing adverse fitness consequences of breeding. These behavioural comparisons among Greenland white-fronted geese improve our understanding of fitness trade-offs underlying abundance. We provide a reproducible framework for full annual cycle modelling using location and behaviour data, applicable to similarly studied migratory animals.


Subject(s)
Animal Migration , Geese , Female , Animals , Seasons , Weather , Reproduction
2.
Pathogens ; 13(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38251390

ABSTRACT

The United Kingdom (UK) and Europe have seen successive outbreaks of H5N1 clade 2.3.4.4b high-pathogenicity avian influenza virus (HPAIV) since 2020 peaking in the autumn/winter periods. During the 2021/22 season, a mass die-off event of Svalbard Barnacle Geese (Branta leucopsis) was observed on the Solway Firth, a body of water on the west coast border between England and Scotland. This area is used annually by Barnacle Geese to over-winter, before returning to Svalbard to breed. Following initial identification of HPAIV in a Barnacle Goose on 8 November 2021, up to 32% of the total Barnacle Goose population may have succumbed to disease by the end of March 2022, along with other wild bird species in the area. Potential adaptation of the HPAIV to the Barnacle Goose population within this event was evaluated. Whole-genome sequencing of thirty-three HPAIV isolates from wild bird species demonstrated that there had been two distinct incursions of the virus, but the two viruses had remained genetically stable within the population, whilst viruses from infected wild birds were closely related to those from poultry cases occurring in the same region. Analysis of sera from the following year demonstrated that a high percentage (76%) of returning birds had developed antibodies to H5 AIV. This study demonstrates genetic stability of this strain of HPAIV in wild Anseriformes, and that, at the population scale, whilst there is a significant impact on survival, a high proportion of birds recover following infection.

3.
Ecol Evol ; 13(7): e10281, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37456071

ABSTRACT

Researchers generally ascribe demographic drivers in a single sub-population and presume they are representative. With this information, practitioners implement blanket conservation measures across metapopulations to reverse declines. However, such approaches may not be appropriate in circumstances where sub-populations are spatiotemporally segregated and exposed to different environmental variation. The Greenland White-fronted Goose, Anser albifrons flavirostris, is an Arctic-nesting migrant that largely comprises two sub-populations (delineated by northerly and southerly breeding areas in west Greenland). The metapopulation has declined since 1999 but this trend is only mirrored in one sub-population and the causes of this disparity are unclear. Here we compare the drivers and trends of productivity in both sub-populations using population- and individual-level analysis. We examined how temperature and precipitation influenced population-level reproductive success over 37 years and whether there was a change in the relationship when metapopulation decline commenced. In addition, we used biologging devices to remotely classify incubation events for 86 bird-years and modelled how phenology and environmental conditions influenced individual-level nest survival. Correlations between reproductive success and temperature/precipitation on the breeding grounds have weakened for both sub-populations. This has resulted in lower reproductive success for the northerly, but not southerly breeding sub-population, which at the individual-level appears to be driven by lower nest survival. Earlier breeding ground arrival and less precipitation during incubation increased nest survival in the northerly breeding population, while no factors examined were important for the southerly breeding sub-population. This suggests reproductive success is driven by different factor(s) in the two sub-populations. Demographic rates and their environmental drivers differ between the sub-populations examined here and consequently we encourage further decomposition of demography within metapopulations. This is important for conservation practitioners to consider as bespoke conservation strategies, targeting different limiting factors, may be required for different sub-populations.

4.
Oecologia ; 201(2): 369-383, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36576527

ABSTRACT

Arctic-nesting geese face energetic challenges during spring migration, including ecological barriers and weather conditions (e.g., precipitation and temperature), which in long-lived species can lead to a trade-off to defer reproduction in favor of greater survival. We used GPS location and acceleration data collected from 35 greater white-fronted geese of the North American midcontinent and Greenland populations at spring migration stopovers, and novel applications of Bayesian dynamic linear models to test daily effects of minimum temperature and precipitation on energy expenditure (i.e., overall dynamic body acceleration, ODBA) and proportion of time spent feeding (PTF), then examined the daily and additive importance of ODBA and PTF on probability of breeding deferral using stochastic antecedent models. We expected distinct responses in behavior and probability of breeding deferral between and within populations due to differences in stopover area availability. Time-varying coefficients of weather conditions were variable between ODBA and PTF, and often did not show consistent patterns among birds, indicating plasticity in how individuals respond to conditions. An increase in antecedent ODBA was associated with a slightly increased probability of deferral in midcontinent geese but not Greenland geese. Probability of deferral decreased with increased PTF in both populations. We did not detect any differentially important time periods. These results suggest either that movements and behavior throughout spring migration do not explain breeding deferral or that ecological linkages between bird decisions during spring and subsequent breeding deferral were different between populations and across migration but occurred at different time scales than those we examined.


Subject(s)
Animal Migration , Geese , Humans , Animals , Geese/physiology , Bayes Theorem , Animal Migration/physiology , Seasons , Temperature , Breeding , Probability
5.
Glob Chang Biol ; 25(11): 3680-3693, 2019 11.
Article in English | MEDLINE | ID: mdl-31475774

ABSTRACT

All long-distance migrants must cope with changing environments, but species differ greatly in how they do so. In some species, individuals might be able to adjust by learning from individual experiences and by copying others. This could greatly speed up the process of adjustment, but evidence from the wild is scarce. Here, we investigated the processes by which a rapidly growing population of barnacle geese (Branta leucopsis) responded to strong environmental changes on spring-staging areas in Norway. One area, Helgeland, has been the traditional site. Since the mid-1990s, an increasing number of geese stage in another area 250 km further north, Vesterålen. We collected data on goose numbers and weather conditions from 1975 to 2017 to explore the extent to which the increase in population size and a warmer climate contributed to this change in staging area use. During the study period, the estimated onset of grass growth advanced on average by 0.54 days/year in each of the two areas. The total production of digestible biomass for barnacle geese during the staging period increased in Vesterålen but remained stable in Helgeland. The goose population has doubled in size during the past 25 years, with most of the growth being accommodated in Vesterålen. The observations suggest that this dramatic increase would not have happened without higher temperatures in Vesterålen. Records of individually marked geese indicate that from the initial years of colonization onwards, especially young geese tended to switch to Vesterålen, thereby predominating in the flocks at Vesterålen. Older birds had a lower probability of switching to Vesterålen, but over the years, the probability increased for all ages. Our findings suggest that barnacle geese integrate socially learned behaviour with adjustments to individual experiences, allowing the population to respond rapidly and accurately to global change.


Subject(s)
Geese , Thoracica , Animal Migration , Animals , Climate Change , Norway , Population Growth , Seasons
7.
Nat Commun ; 10(1): 2187, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097711

ABSTRACT

Tracking seasonally changing resources is regarded as a widespread proximate mechanism underpinning animal migration. Migrating herbivores, for example, are hypothesized to track seasonal foliage dynamics over large spatial scales. Previous investigations of this green wave hypothesis involved few species and limited geographical extent, and used conventional correlation that cannot disentangle alternative correlated effects. Here, we introduce stochastic simulations to test this hypothesis using 222 individual spring migration episodes of 14 populations of ten species of geese, swans and dabbling ducks throughout Europe, East Asia, and North America. We find that the green wave cannot be considered a ubiquitous driver of herbivorous waterfowl spring migration, as it explains observed migration patterns of only a few grazing populations in specific regions. We suggest that ecological barriers and particularly human disturbance likely constrain the capacity of herbivorous waterfowl to track the green wave in some regions, highlighting key challenges in conserving migratory birds.


Subject(s)
Animal Migration/physiology , Ducks/physiology , Geese/physiology , Herbivory/physiology , Models, Biological , Animals , Europe , Asia, Eastern , North America , Seasons , Stochastic Processes
8.
Environ Sci Technol ; 53(9): 5427-5435, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30938990

ABSTRACT

Arctic-breeding geese acquire resources for egg production from overwintering grounds, spring stopover sites and breeding grounds, where pollutant exposure may differ. We investigated the effect of migration strategy on pollutant occurrence of lipophilic polychlorinated biphenyls (PCBs) and protein-associated poly- and perfluoroalkyl substances (PFASs) and mercury (Hg) in eggs of herbivorous barnacle geese ( Branta leucopsis) from an island colony on Svalbard. Stable isotopes (δ13C and δ15N) in eggs and vegetation collected along the migration route were similar. Pollutant concentrations in eggs were low, reflecting their terrestrial diet (∑PCB = 1.23 ± 0.80 ng/g ww; ∑PFAS = 1.21 ± 2.97 ng/g ww; Hg = 20.17 ± 7.52 ng/g dw). PCB concentrations in eggs increased with later hatch date, independent of lipid content which also increased over time. Some females may remobilize and transfer more PCBs to their eggs, by delaying migration several weeks, relying on more polluted and stored resources, or being in poor body condition when arriving at the breeding grounds. PFAS and Hg occurrence in eggs did not change throughout the breeding season, suggesting migration has a greater effect on lipophilic pollutants. Pollutant exposure during offspring production in arctic-breeding migrants may result in different profiles, with effects becoming more apparent with increasing trophic levels.


Subject(s)
Environmental Pollutants , Thoracica , Animals , Arctic Regions , Breeding , Female , Geese , Islands , Svalbard
9.
PeerJ ; 5: e3228, 2017.
Article in English | MEDLINE | ID: mdl-28507815

ABSTRACT

The tadpole shrimp, Triops cancriformis, is a freshwater crustacean listed as endangered in the UK and Europe living in ephemeral pools. Populations are threatened by habitat destruction due to land development for agriculture and increased urbanisation. Despite this, there is a lack of efficient methods for discovering and monitoring populations. Established macroinvertebrate monitoring methods, such as net sampling, are unsuitable given the organism's life history, that include long lived diapausing eggs, benthic habits and ephemerally active populations. Conventional hatching methods, such as sediment incubation, are both time consuming and potentially confounded by bet-hedging hatching strategies of diapausing eggs. Here we develop a new molecular diagnostic method to detect viable egg banks of T. cancriformis, and compare its performance to two conventional monitoring methods involving diapausing egg hatching. We apply this method to a collection of pond sediments from the Wildfowl & Wetlands Trust Caerlaverock National Nature Reserve, which holds one of the two remaining British populations of T. cancriformis. DNA barcoding of isolated eggs, using newly designed species-specific primers for a large region of mtDNA, was used to estimate egg viability. These estimates were compared to those obtained by the conventional methods of sediment and isolation hatching. Our method outperformed the conventional methods, revealing six ponds holding viable T. cancriformis diapausing egg banks in Caerlaverock. Additionally, designed species-specific primers for a short region of mtDNA identified degraded, inviable eggs and were used to ascertain the levels of recent mortality within an egg bank. Together with efficient sugar flotation techniques to extract eggs from sediment samples, our molecular method proved to be a faster and more powerful alternative for assessing the viability and condition of T. cancriformis diapausing egg banks.

10.
Curr Zool ; 63(6): 667-674, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29492028

ABSTRACT

Understanding how individuals manage costs during the migration period is challenging because individuals are difficult to follow between sites; the advent of hybrid Global Positioning System-acceleration (ACC) tracking devices enables researchers to link spatial and temporal attributes of avian migration with behavior for the first time ever. We fitted these devices on male Greenland white-fronted geese Anser albifrons flavirostris wintering at 2 sites (Loch Ken, Scotland and Wexford, Ireland) to understand whether birds migrating further during spring fed more on wintering and staging areas in advance of migration episodes. Although Irish birds flew significantly further (ca. 300 km) than Scottish birds during spring, their cumulative hours of migratory flight, flight speed during migration, and overall dynamic body ACC (i.e., a proxy for energy expenditure) were not significantly different. Further, Irish birds did not feed significantly more or expend significantly more energy in advance of migration episodes. These results suggest broad individual plasticity in this species, although Scottish birds arriving on breeding areas in Greenland with greater energy stores (because they migrated less) may be better prepared for food scarcity, which might increase their reproductive success.

11.
J Anim Ecol ; 84(1): 272-83, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25117616

ABSTRACT

Herbivorous birds are hypothesized to migrate in spring along a seasonal gradient of plant profitability towards their breeding grounds (green wave hypothesis). For Arctic breeding species in particular, following highly profitable food is important, so that they can replenish resources along the way and arrive in optimal body condition to start breeding early. We compared the timing of migratory movements of Arctic breeding geese on different flyways to examine whether flyways differed in the predictability of spring conditions at stopovers and whether this was reflected in the degree to which birds were following the green wave. Barnacle geese (Branta leucopsis) were tracked with solar GPS/ARGOS PTTs from their wintering grounds to breeding sites in Greenland (N = 7), Svalbard (N = 21) and the Barents Sea (N = 12). The numerous stopover sites of all birds were combined into a set of 16 general stopover regions. The predictability of climatic conditions along the flyways was calculated as the correlation and slope between onsets of spring at consecutive stopovers. These values differed between sites, mainly because of the presence or absence of ecological barriers. Goose arrival at stopovers was more closely tied to the local onset of spring when predictability was higher and when geese attempted breeding that year. All birds arrived at early stopovers after the onset of spring and arrived at the breeding grounds before the onset of spring, thus overtaking the green wave. This is in accordance with patterns expected for capital breeders: first, they must come into condition; at intermediate stopovers, arrival with the food quality peak is important to stay in condition, and at the breeding grounds, early arrival is favoured so that hatching of young can coincide with the peak of food quality. Our results suggest that a chain of correlations between climatic conditions at subsequent stopovers enables geese to closely track the green wave. However, the birds' precision of migratory timing seems uninfluenced by ecological barriers, indicating partly fixed migration schedules. These might become non-optimal due to climate warming and preclude accurate timing of long-distance migrants in the future.


Subject(s)
Animal Migration , Food Chain , Geese/physiology , Animals , Arctic Regions , Europe , Female , Male , Seasons
12.
PLoS One ; 9(9): e108331, 2014.
Article in English | MEDLINE | ID: mdl-25248162

ABSTRACT

Many migrating herbivores rely on plant biomass to fuel their life cycles and have adapted to following changes in plant quality through time. The green wave hypothesis predicts that herbivorous waterfowl will follow the wave of food availability and quality during their spring migration. However, testing this hypothesis is hampered by the large geographical range these birds cover. The satellite-derived normalized difference vegetation index (NDVI) time series is an ideal proxy indicator for the development of plant biomass and quality across a broad spatial area. A derived index, the green wave index (GWI), has been successfully used to link altitudinal and latitudinal migration of mammals to spatio-temporal variations in food quality and quantity. To date, this index has not been used to test the green wave hypothesis for individual avian herbivores. Here, we use the satellite-derived GWI to examine the green wave hypothesis with respect to GPS-tracked individual barnacle geese from three flyway populations (Russian n = 12, Svalbard n = 8, and Greenland n = 7). Data were collected over three years (2008-2010). Our results showed that the Russian and Svalbard barnacle geese followed the middle stage of the green wave (GWI 40-60%), while the Greenland geese followed an earlier stage (GWI 20-40%). Despite these differences among geese populations, the phase of vegetation greenness encountered by the GPS-tracked geese was close to the 50% GWI (i.e. the assumed date of peak nitrogen concentration), thereby implying that barnacle geese track high quality food during their spring migration. To our knowledge, this is the first time that the migration of individual avian herbivores has been successfully studied with respect to vegetation phenology using the satellite-derived GWI. Our results offer further support for the green wave hypothesis applying to long-distance migrants on a larger scale.


Subject(s)
Animal Migration , Geese/physiology , Herbivory/physiology , Plants , Spacecraft , Altitude , Analysis of Variance , Animals , Biomass , Food Supply , Greenland , Least-Squares Analysis , Models, Biological , Russia , Seasons , Svalbard
13.
Mov Ecol ; 1(1): 4, 2013.
Article in English | MEDLINE | ID: mdl-25709818

ABSTRACT

BACKGROUND: Understanding how environmental conditions, especially wind, influence birds' flight speeds is a prerequisite for understanding many important aspects of bird flight, including optimal migration strategies, navigation, and compensation for wind drift. Recent developments in tracking technology and the increased availability of data on large-scale weather patterns have made it possible to use path annotation to link the location of animals to environmental conditions such as wind speed and direction. However, there are various measures available for describing not only wind conditions but also the bird's flight direction and ground speed, and it is unclear which is best for determining the amount of wind support (the length of the wind vector in a bird's flight direction) and the influence of cross-winds (the length of the wind vector perpendicular to a bird's direction) throughout a bird's journey. RESULTS: We compared relationships between cross-wind, wind support and bird movements, using path annotation derived from two different global weather reanalysis datasets and three different measures of direction and speed calculation for 288 individuals of nine bird species. Wind was a strong predictor of bird ground speed, explaining 10-66% of the variance, depending on species. Models using data from different weather sources gave qualitatively similar results; however, determining flight direction and speed from successive locations, even at short (15 min intervals), was inferior to using instantaneous GPS-based measures of speed and direction. Use of successive location data significantly underestimated the birds' ground and airspeed, and also resulted in mistaken associations between cross-winds, wind support, and their interactive effects, in relation to the birds' onward flight. CONCLUSIONS: Wind has strong effects on bird flight, and combining GPS technology with path annotation of weather variables allows us to quantify these effects for understanding flight behaviour. The potentially strong influence of scaling effects must be considered and implemented in developing sampling regimes and data analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...