Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Emerg Infect Dis ; 30(6): 1144-1153, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781926

ABSTRACT

Few precise estimates of hospitalization and fatality rates from COVID-19 exist for naive populations, especially within demographic subgroups. We estimated rates among persons with SARS-CoV-2 infection in the United States during May 1-December 1, 2020, before vaccines became available. Both rates generally increased with age; fatality rates were highest for persons >85 years of age (24%) and lowest for children 1-14 years of age (0.01%). Age-adjusted case hospitalization rates were highest for African American or Black, not Hispanic persons (14%), and case-fatality rates were highest for Asian or Pacific Islander, not Hispanic persons (4.4%). Eighteen percent of hospitalized patients and 44.2% of those admitted to an intensive care unit died. Male patients had higher hospitalization (6.2% vs. 5.2%) and fatality rates (1.9% vs. 1.5%) than female patients. These findings highlight the importance of collecting surveillance data to devise appropriate control measures for persons in underserved racial/ethnic groups and older adults.


Subject(s)
COVID-19 , Hospitalization , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/epidemiology , Hospitalization/statistics & numerical data , Male , Female , Adolescent , Aged , Child , Child, Preschool , Middle Aged , Adult , Infant , United States/epidemiology , Aged, 80 and over , Young Adult , Infant, Newborn , COVID-19 Vaccines/administration & dosage , Ethnicity/statistics & numerical data
2.
Clin Infect Dis ; 78(3): 535-543, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37823421

ABSTRACT

BACKGROUND: Nontyphoidal Salmonella causes an estimated 1.35 million US infections annually. Antimicrobial-resistant strains are a serious public health threat. We examined the association between resistance and the clinical outcomes of hospitalization, length-of-stay ≥3 days, and death. METHODS: We linked epidemiologic data from the Foodborne Diseases Active Surveillance Network with antimicrobial resistance data from the National Antimicrobial Resistance Monitoring System (NARMS) for nontyphoidal Salmonella infections from 2004 to 2018. We defined any resistance as resistance to ≥1 antimicrobial and clinical resistance as resistance to ampicillin, azithromycin, ceftriaxone, ciprofloxacin, or trimethoprim-sulfamethoxazole (for the subset of isolates tested for all 5 agents). We compared outcomes before and after adjusting for age, state, race/ethnicity, international travel, outbreak association, and isolate serotype and source. RESULTS: Twenty percent of isolates (1105/5549) had any resistance, and 16% (469/2969) had clinical resistance. Persons whose isolates had any resistance were more likely to be hospitalized (31% vs 28%, P = .01) or have length-of-stay ≥3 days (20% vs 16%, P = .01). Deaths were rare but more common among those with any than no resistance (1.0% vs 0.4%, P = .01). Outcomes for patients whose isolates had clinical resistance did not differ significantly from those with no resistance. After adjustment, any resistance (adjusted odds ratio 1.23, 95% confidence interval 1.04-1.46) remained significantly associated with hospitalization. CONCLUSIONS: We observed a significant association between nontyphoidal Salmonella infections caused by resistant pathogens and likelihood of hospitalization. Clinical resistance was not associated with poorer outcomes, suggesting that factors other than treatment failure (eg, strain virulence, strain source, host factors) may be important.


Subject(s)
Anti-Infective Agents , Foodborne Diseases , Salmonella Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Watchful Waiting , Microbial Sensitivity Tests , Salmonella Infections/drug therapy , Salmonella Infections/epidemiology , Foodborne Diseases/epidemiology
3.
MMWR Morb Mortal Wkly Rep ; 72(26): 701-706, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37384552

ABSTRACT

Each year, infections from major foodborne pathogens are responsible for an estimated 9.4 million illnesses, 56,000 hospitalizations, and 1,350 deaths in the United States (1). To evaluate progress toward prevention of enteric infections in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts surveillance for laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food at 10 U.S. sites. During 2020-2021, FoodNet detected decreases in many infections that were due to behavioral modifications, public health interventions, and changes in health care-seeking and testing practices during the COVID-19 pandemic. This report presents preliminary estimates of pathogen-specific annual incidences during 2022, compared with average annual incidences during 2016-2018, the reference period for the U.S. Department of Health and Human Services' Healthy People 2030 targets (2). Many pandemic interventions ended by 2022, resulting in a resumption of outbreaks, international travel, and other factors leading to enteric infections. During 2022, annual incidences of illnesses caused by the pathogens Campylobacter, Salmonella, Shigella, and Listeria were similar to average annual incidences during 2016-2018; however, incidences of Shiga toxin-producing Escherichia coli (STEC), Yersinia, Vibrio, and Cyclospora illnesses were higher. Increasing culture-independent diagnostic test (CIDT) usage likely contributed to increased detection by identifying infections that would have remained undetected before widespread CIDT usage. Reducing pathogen contamination during poultry slaughter and processing of leafy greens requires collaboration among food growers and processors, retail stores, restaurants, and regulators.


Subject(s)
COVID-19 , Foodborne Diseases , Humans , Animals , Incidence , Pandemics , Watchful Waiting , COVID-19/epidemiology , Foodborne Diseases/epidemiology
4.
Emerg Infect Dis ; 29(6): 1183-1190, 2023 06.
Article in English | MEDLINE | ID: mdl-37209671

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) causes acute diarrheal illness. To determine risk factors for non-O157 STEC infection, we enrolled 939 patients and 2,464 healthy controls in a case-control study conducted in 10 US sites. The highest population-attributable fractions for domestically acquired infections were for eating lettuce (39%), tomatoes (21%), or at a fast-food restaurant (23%). Exposures with 10%-19% population attributable fractions included eating at a table service restaurant, eating watermelon, eating chicken, pork, beef, or iceberg lettuce prepared in a restaurant, eating exotic fruit, taking acid-reducing medication, and living or working on or visiting a farm. Significant exposures with high individual-level risk (odds ratio >10) among those >1 year of age who did not travel internationally were all from farm animal environments. To markedly decrease the number of STEC-related illnesses, prevention measures should focus on decreasing contamination of produce and improving the safety of foods prepared in restaurants.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Animals , Cattle , United States/epidemiology , Escherichia coli Infections/epidemiology , Case-Control Studies , Risk Factors , Diarrhea/epidemiology
5.
Pediatrics ; 151(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37161700

ABSTRACT

OBJECTIVES: Describe characteristics of gastroenteritis, bacteremia, and meningitis caused by nontyphoidal Salmonella among US infants. METHODS: We analyze national surveillance data during 1968-2015 and active, sentinel surveillance data during 1996-2015 for culture-confirmed Salmonella infections by syndrome, year, serotype, age, and race. RESULTS: During 1968-2015, 190 627 culture-confirmed Salmonella infections among infants were reported, including 165 236 (86.7%) cases of gastroenteritis, 6767 (3.5%) bacteremia, 371 (0.2%) meningitis, and 18 253 (9.7%) with other or unknown specimen sources. Incidence increased during the late 1970s-1980s, declined during the 1990s-early 2000s, and has gradually increased since the mid-2000s. Infants' median age was 4 months for gastroenteritis and bacteremia and 2 months for meningitis. The most frequently reported serotypes were Typhimurium (35 468; 22%) for gastroenteritis and Heidelberg for bacteremia (1954; 29%) and meningitis (65; 18%). During 1996-2015 in sentinel site surveillance, median annual incidence of gastroenteritis was 120, bacteremia 6.2, and meningitis 0.25 per 100 000 infants. Boys had a higher incidence of each syndrome than girls in both surveillance systems, but most differences were not statistically significant. Overall, hospitalization and fatality rates were 26% and 0.1% for gastroenteritis, 70% and 1.6% for bacteremia, and 96% and 4% for meningitis. During 2004-2015, invasive salmonellosis incidence was higher for Black (incident rate ratio, 2.7; 95% confidence interval, 2.6-2.8) and Asian (incident rate ratio, 1.8; 95% confidence interval, 1.7-1.8) than white infants. CONCLUSIONS: Salmonellosis causes substantial infant morbidity and mortality; serotype heidelberg caused the most invasive infections. Infants with meningitis were younger than those with bacteremia or gastroenteritis. Research into risk factors for infection and invasive illness could inform prevention efforts.


Subject(s)
Bacteremia , Gastroenteritis , Salmonella Infections , Male , Female , Infant , Humans , United States/epidemiology , Salmonella Infections/epidemiology , Salmonella Infections/complications , Salmonella , Risk Factors , Bacteremia/epidemiology , Gastroenteritis/epidemiology , Gastroenteritis/complications
6.
MMWR Morb Mortal Wkly Rep ; 72(18): 484-487, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37141151

ABSTRACT

Not ready-to-eat (NRTE) breaded, stuffed chicken products (e.g., chicken stuffed with broccoli and cheese) typically have a crispy, browned exterior that can make them appear cooked. These products have been repeatedly linked to U.S. salmonellosis outbreaks, despite changes to packaging initiated in 2006 to identify the products as raw and warn against preparing them in a microwave oven (microwave) (1-4). On April 28, 2023, the U.S. Department of Agriculture proposed to declare Salmonella an adulterant* at levels of one colony forming unit per gram or higher in these products (5). Salmonella outbreaks associated with NRTE breaded, stuffed chicken products during 1998-2022 were summarized using reports in CDC's Foodborne Disease Outbreak Surveillance System (FDOSS), outbreak questionnaires, web postings, and data from the Minnesota Department of Health (MDH)† and the U.S. Department of Agriculture's Food Safety and Inspection Service (FSIS). Eleven outbreaks were identified in FDOSS. Among cultured samples from products obtained from patients' homes and from retail stores during 10 outbreaks, a median of 57% of cultures per outbreak yielded Salmonella. The NRTE breaded, stuffed chicken products were produced in at least three establishments.§ In the seven most recent outbreaks, 0%-75% of ill respondents reported cooking the product in a microwave and reported that they thought the product was sold fully cooked or did not know whether it was sold raw or fully cooked. Outbreaks associated with these products have occurred despite changes to product labels that better inform consumers that the products are raw and provide instructions on safe preparation, indicating that consumer-targeted interventions are not sufficient. Additional Salmonella controls at the manufacturer level to reduce contamination in ingredients might reduce illnesses attributable to NRTE breaded, stuffed chicken products.


Subject(s)
Food Contamination , Salmonella Food Poisoning , Salmonella Infections , Salmonella , Animals , Humans , Chickens , Disease Outbreaks , Food Contamination/analysis , Food Microbiology , Minnesota , Salmonella/isolation & purification , United States/epidemiology , Salmonella Food Poisoning/epidemiology , Salmonella Infections/epidemiology
7.
Clin Infect Dis ; 76(1): 89-95, 2023 01 06.
Article in English | MEDLINE | ID: mdl-35797187

ABSTRACT

BACKGROUND: Frozen foods have rarely been linked to Listeria monocytogenes illness. We describe an outbreak investigation prompted by both hospital clustering of illnesses and product testing. METHODS: We identified outbreak-associated listeriosis cases using whole-genome sequencing (WGS), product testing results, and epidemiologic linkage to cases in the same Kansas hospital. We reviewed hospital medical and dietary records, product invoices, and molecular subtyping results. Federal and state officials tested product and environmental samples for L. monocytogenes. RESULTS: Kansas officials were investigating 5 cases of listeriosis at a single hospital when, simultaneously, unrelated sampling for a study in South Carolina identified L. monocytogenes in Company A ice cream products made in Texas. Isolates from 4 patients and Company A products were closely related by WGS, and the 4 patients with known exposures had consumed milkshakes made with Company A ice cream while hospitalized. Further testing identified L. monocytogenes in ice cream produced in a second Company A production facility in Oklahoma; these isolates were closely related by WGS to those from 5 patients in 3 other states. These 10 illnesses, involving 3 deaths, occurred from 2010 through 2015. Company A ultimately recalled all products. CONCLUSIONS: In this US outbreak of listeriosis linked to a widely distributed brand of ice cream, WGS and product sampling helped link cases spanning 5 years to 2 production facilities, indicating longstanding contamination. Comprehensive sanitation controls and environmental and product testing for L. monocytogenes with regulatory oversight should be implemented for ice cream production.


Subject(s)
Foodborne Diseases , Ice Cream , Listeria monocytogenes , Listeriosis , Humans , United States/epidemiology , Listeria monocytogenes/genetics , Foodborne Diseases/epidemiology , Food Microbiology , Listeriosis/epidemiology , South Carolina , Disease Outbreaks
8.
MMWR Morb Mortal Wkly Rep ; 71(40): 1260-1264, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36201372

ABSTRACT

To evaluate progress toward prevention of enteric infections in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) conducts active population-based surveillance for laboratory-diagnosed infections caused by Campylobacter, Cyclospora, Listeria, Salmonella, Shiga toxin-producing Escherichia coli (STEC), Shigella, Vibrio, and Yersinia at 10 U.S. sites. This report summarizes preliminary 2021 data and describes changes in annual incidence compared with the average annual incidence for 2016-2018, the reference period for the U.S. Department of Health and Human Services' (HHS) Healthy People 2030 goals for some pathogens (1). During 2021, the incidence of infections caused by Salmonella decreased, incidence of infections caused by Cyclospora, Yersinia, and Vibrio increased, and incidence of infections caused by other pathogens did not change. As in 2020, behavioral modifications and public health interventions implemented to control the COVID-19 pandemic might have decreased transmission of enteric infections (2). Other factors (e.g., increased use of telemedicine and continued increase in use of culture-independent diagnostic tests [CIDTs]) might have altered their detection or reporting (2). Much work remains to achieve HHS Healthy People 2030 goals, particularly for Salmonella infections, which are frequently attributed to poultry products and produce, and Campylobacter infections, which are frequently attributed to chicken products (3).


Subject(s)
COVID-19 , Foodborne Diseases , Vibrio , Foodborne Diseases/epidemiology , Humans , Incidence , Pandemics , Population Surveillance , Salmonella , United States/epidemiology , Watchful Waiting
9.
Open Forum Infect Dis ; 9(8): ofac344, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35928506

ABSTRACT

Background: Pathogen detection has changed with increased use of culture-independent diagnostic tests (CIDTs). CIDTs do not yield isolates, which are necessary to detect outbreaks using whole-genome sequencing. The Foodborne Diseases Active Surveillance Network (FoodNet) monitors clinical laboratory testing practices to improve interpretation of surveillance data and assess availability of isolates. We describe changes in practices over 8 years. Methods: During 2012-2019, 10 FoodNet sites collected standardized data about practices in clinical laboratories (range, 664-723 laboratories) for select enteric pathogens. We assessed changes in practices. Results: During 2012-2019, the percentage of laboratories that used only culture methods decreased, with the largest declines for Vibrio (99%-57%) and Yersinia (99%-60%). During 2019, the percentage of laboratories using only CIDTs was highest for Shiga toxin-producing Escherichia coli (43%), Campylobacter (34%), and Vibrio (34%). From 2015 to 2019, the percentage of laboratories that performed reflex culture after a positive CIDT decreased, with the largest declines for Shigella (75%-42%) and Salmonella (70%-38%). The percentage of laboratories that routinely submitted isolates to a public health laboratory decreased for all bacterial pathogens examined from 2015 to 2019. Conclusions: By increasing use of CIDTs and decreasing reflex culture, clinical laboratories have transferred the burden of isolate recovery to public health laboratories. Until technologies allow for molecular subtyping directly from a patient specimen, state public health laboratories should consider updating enteric disease reporting requirements to include submission of isolates or specimens. Public health laboratories need resources for isolate recovery.

10.
Foodborne Pathog Dis ; 19(6): 417-422, 2022 06.
Article in English | MEDLINE | ID: mdl-35713923

ABSTRACT

Foodborne botulism is a rapidly progressive potentially fatal paralyzing illness caused by the consumption of botulinum neurotoxin, which is most commonly produced by Clostridium botulinum. Refrigeration is the primary barrier to botulinum neurotoxin production in many processed foods. C. botulinum toxin production has occurred and caused botulism in the United States when foods that were not processed to destroy spores of C. botulinum were stored in an anaerobic environment and not properly refrigerated. We identified 37 cases, including 4 deaths, that occurred during 1994-2021 in the United States from 13 events associated with inadequate refrigeration of commercially produced products. In 11 events, the patient stored the product unrefrigerated at home; in 2 events, a product was kept unrefrigerated at the store before the consumer purchased it. In three events, refrigeration instructions were inadequate or not easily accessible (one label printed on outer but not inner packaging, one label not clearly visible, and one label was not in English). The number of people affected per event ranged from 1 to 16. Using enhanced cost estimates for foodborne botulism cases from a published economic model, these events were estimated to cost >$79M. Potential solutions to this recurring problem include the addition of a secondary barrier, such as an acidifier, to prevent botulinum toxin production, and better labeling to convey risks of refrigerated foods that have not been processed to destroy spores of C. botulinum and to decrease the occurrence of improper storage and handling.


Subject(s)
Botulinum Toxins , Botulism , Clostridium botulinum , Botulism/epidemiology , Food Microbiology , Humans , Refrigeration , United States/epidemiology
11.
J Food Prot ; 85(5): 755-772, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35259246

ABSTRACT

ABSTRACT: This multiagency report developed by the Interagency Collaboration for Genomics for Food and Feed Safety provides an overview of the use of and transition to whole genome sequencing (WGS) technology for detection and characterization of pathogens transmitted commonly by food and for identification of their sources. We describe foodborne pathogen analysis, investigation, and harmonization efforts among the following federal agencies: National Institutes of Health; Department of Health and Human Services, Centers for Disease Control and Prevention (CDC) and U.S. Food and Drug Administration (FDA); and the U.S. Department of Agriculture, Food Safety and Inspection Service, Agricultural Research Service, and Animal and Plant Health Inspection Service. We describe single nucleotide polymorphism, core-genome, and whole genome multilocus sequence typing data analysis methods as used in the PulseNet (CDC) and GenomeTrakr (FDA) networks, underscoring the complementary nature of the results for linking genetically related foodborne pathogens during outbreak investigations while allowing flexibility to meet the specific needs of Interagency Collaboration partners. We highlight how we apply WGS to pathogen characterization (virulence and antimicrobial resistance profiles) and source attribution efforts and increase transparency by making the sequences and other data publicly available through the National Center for Biotechnology Information. We also highlight the impact of current trends in the use of culture-independent diagnostic tests for human diagnostic testing on analytical approaches related to food safety and what is next for the use of WGS in the area of food safety.


Subject(s)
Foodborne Diseases , Animals , Disease Outbreaks/prevention & control , Food Safety , Foodborne Diseases/epidemiology , Foodborne Diseases/prevention & control , Genomics , United States , Whole Genome Sequencing
12.
Microorganisms ; 9(9)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34576892

ABSTRACT

Treatment of Shiga toxin-producing Escherichia coli O157 (O157) diarrhea with antimicrobials might alter the risk of hemolytic uremic syndrome (HUS). However, full characterization of which antimicrobials might affect risk is lacking, particularly among adults. To inform clinical management, we conducted a case-control study of residents of the FoodNet surveillance areas with O157 diarrhea during a 4-year period to assess antimicrobial class-specific associations with HUS among persons with O157 diarrhea. We collected data from medical records and patient interviews. We measured associations between treatment with agents in specific antimicrobial classes during the first week of diarrhea and development of HUS, adjusting for age and illness severity. We enrolled 1308 patients; 102 (7.8%) developed confirmed HUS. Antimicrobial treatment varied by age: <5 years (12.6%), 5-14 (11.5%), 15-39 (45.4%), ≥40 (53.4%). Persons treated with a ß-lactam had higher odds of developing HUS (OR 2.80, CI 1.14-6.89). None of the few persons treated with a macrolide developed HUS, but the protective association was not statistically significant. Exposure to "any antimicrobial" was not associated with increased odds of HUS. Our findings confirm the risk of ß-lactams among children with O157 diarrhea and extends it to adults. We observed a high frequency of inappropriate antimicrobial treatment among adults. Our data suggest that antimicrobial classes differ in the magnitude of risk for persons with O157 diarrhea.

13.
MMWR Morb Mortal Wkly Rep ; 70(38): 1332-1336, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34555002

ABSTRACT

Foodborne illnesses are a substantial and largely preventable public health problem; before 2020 the incidence of most infections transmitted commonly through food had not declined for many years. To evaluate progress toward prevention of foodborne illnesses in the United States, the Foodborne Diseases Active Surveillance Network (FoodNet) of CDC's Emerging Infections Program monitors the incidence of laboratory-diagnosed infections caused by eight pathogens transmitted commonly through food reported by 10 U.S. sites.* FoodNet is a collaboration among CDC, 10 state health departments, the U.S. Department of Agriculture's Food Safety and Inspection Service (USDA-FSIS), and the Food and Drug Administration. This report summarizes preliminary 2020 data and describes changes in incidence with those during 2017-2019. During 2020, observed incidences of infections caused by enteric pathogens decreased 26% compared with 2017-2019; infections associated with international travel decreased markedly. The extent to which these reductions reflect actual decreases in illness or decreases in case detection is unknown. On March 13, 2020, the United States declared a national emergency in response to the COVID-19 pandemic. After the declaration, state and local officials implemented stay-at-home orders, restaurant closures, school and child care center closures, and other public health interventions to slow the spread of SARS-CoV-2, the virus that causes COVID-19 (1). Federal travel restrictions were declared (1). These widespread interventions as well as other changes to daily life and hygiene behaviors, including increased handwashing, have likely changed exposures to foodborne pathogens. Other factors, such as changes in health care delivery, health care-seeking behaviors, and laboratory testing practices, might have decreased the detection of enteric infections. As the pandemic continues, surveillance of illness combined with data from other sources might help to elucidate the factors that led to the large changes in 2020; this understanding could lead to improved strategies to prevent illness. To reduce the incidence of these infections concerted efforts are needed, from farm to processing plant to restaurants and homes. Consumers can reduce their risk of foodborne illness by following safe food-handling and preparation recommendations.


Subject(s)
COVID-19/epidemiology , Food Microbiology/statistics & numerical data , Food Parasitology/statistics & numerical data , Foodborne Diseases/epidemiology , Pandemics , Watchful Waiting , Adolescent , Child , Child, Preschool , Foodborne Diseases/microbiology , Foodborne Diseases/parasitology , Humans , Incidence , Infant , United States/epidemiology
14.
Emerg Infect Dis ; 27(10): 2554-2559, 2021 10.
Article in English | MEDLINE | ID: mdl-34545783

ABSTRACT

Novel outbreak-associated food vehicles (i.e., foods not implicated in past outbreaks) can emerge as a result of evolving pathogens and changing consumption trends. To identify these foods, we examined data from the Centers for Disease Control and Prevention Foodborne Disease Outbreak Surveillance System and found 14,216 reported outbreaks with information on implicated foods. We compared foods implicated in outbreaks during 2007-2016 with those implicated in outbreaks during 1973-2006. We identified 28 novel food vehicles, of which the most common types were fish, nuts, fruits, and vegetables; one third were imported. Compared with other outbreaks, those associated with novel food vehicles were more likely to involve illnesses in multiple states and food recalls and were larger in terms of cases, hospitalizations, and deaths. Two thirds of novel foods did not require cooking after purchase. Prevention efforts targeting novel foods cannot rely solely on consumer education but require industry preventive measures.


Subject(s)
Foodborne Diseases , Population Surveillance , Animals , Centers for Disease Control and Prevention, U.S. , Disease Outbreaks , Food Contamination , Food Microbiology , Foodborne Diseases/epidemiology , Humans , United States/epidemiology
15.
Foodborne Pathog Dis ; 18(12): 841-858, 2021 12.
Article in English | MEDLINE | ID: mdl-34529512

ABSTRACT

Estimates of the overall human health impact of agents transmitted commonly through food complement surveillance and help guide food safety interventions and regulatory initiatives. The purpose of this scoping review was to summarize the methods and reporting practices used in studies that estimate the total number of illnesses caused by these agents. We identified and included 43 studies published from January 1, 1995, to December 31, 2019, by searching PubMed and screening selected articles for other relevant publications. Selected articles presented original estimates of the number of illnesses caused by ≥1 agent transmitted commonly through food. The number of agents (species or subspecies for pathogens) included in each study ranged from 1 to 31 (median: 4.5; mean: 9.2). Of the 40 agents assessed across the 43 studies, the most common agent was Salmonella (36; 84% of studies), followed by Campylobacter (33; 77%), Shiga toxin-producing Escherichia coli (25; 58%), and norovirus (20; 47%). Investigators used a variety of data sources and methods that could be grouped into four distinct estimation approaches-direct, surveillance data scaled-up, syndrome or population scaled-down, and inferred. Based on our review, we propose four recommendations to improve the interpretability, comparability, and reproducibility of studies that estimate the number of illnesses caused by agents transmitted commonly through food. These include providing an assessment of statistical and nonstatistical uncertainty, providing a ranking of estimates by agent, including uncertainties; describing the rationale used to select agents and data sources; and publishing raw data and models, along with clear, detailed methods. These recommendations could lead to better decision-making about food safety policies. Although these recommendations have been made in the context of illness estimation for agents transmitted commonly through food, they also apply to estimates of other health outcomes and conditions.


Subject(s)
Foodborne Diseases , Shiga-Toxigenic Escherichia coli , Food Microbiology , Food Safety , Foodborne Diseases/epidemiology , Humans , Population Surveillance , Reproducibility of Results , Salmonella
16.
Microorganisms ; 9(7)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34361964

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) cause illnesses ranging from mild diarrhea to ischemic colitis and hemolytic uremic syndrome (HUS); serogroup O157 is the most common cause. We describe the epidemiology and transmission routes for U.S. STEC outbreaks during 2010-2017. Health departments reported 466 STEC outbreaks affecting 4769 persons; 459 outbreaks had a serogroup identified (330 O157, 124 non-O157, 5 both). Among these, 361 (77%) had a known transmission route: 200 foodborne (44% of O157 outbreaks, 41% of non-O157 outbreaks), 87 person-to-person (16%, 24%), 49 animal contact (11%, 9%), 20 water (4%, 5%), and 5 environmental contamination (2%, 0%). The most common food category implicated was vegetable row crops. The distribution of O157 and non-O157 outbreaks varied by age, sex, and severity. A significantly higher percentage of STEC O157 than non-O157 outbreaks were transmitted by beef (p = 0.02). STEC O157 outbreaks also had significantly higher rates of hospitalization and HUS (p < 0.001).

17.
Epidemiol Infect ; 149: e190, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34275497

ABSTRACT

About 800 foodborne disease outbreaks are reported in the United States annually. Few are associated with food recalls. We compared 226 outbreaks associated with food recalls with those not associated with recalls during 2006-2016. Recall-associated outbreaks had, on average, more illnesses per outbreak and higher proportions of hospitalisations and deaths than non-recall-associated outbreaks. The top confirmed aetiology for recall-associated outbreaks was Salmonella. Pasteurised and unpasteurised dairy products, beef and molluscs were the most frequently implicated foods. The most common pathogen-food pairs for outbreaks with recalls were Escherichia coli-beef and norovirus-molluscs; the top pairs for non-recall-associated outbreaks were scombrotoxin-fish and ciguatoxin-fish. For outbreaks with recalls, 48% of the recalls occurred after the outbreak, 27% during the outbreak, 3% before the outbreak, and 22% were inconclusive or had unknown recall timing. Fifty per cent of recall-associated outbreaks were multistate, compared with 2% of non-recall-associated outbreaks. The differences between recall-associated outbreaks and non-recall-associated outbreaks help define the types of outbreaks and food vehicles that are likely to have a recall. Improved outbreak vehicle identification and traceability of rarely recalled foods could lead to more recalls of these products, resulting in fewer illnesses and deaths.


Subject(s)
Food Contamination , Foodborne Diseases/epidemiology , Disease Outbreaks , Food Contamination/legislation & jurisprudence , Food Microbiology , Foodborne Diseases/microbiology , Humans , Legislation, Food , United States
18.
Emerg Infect Dis ; 27(6): 1662-1672, 2021 06.
Article in English | MEDLINE | ID: mdl-34013877

ABSTRACT

Salmonella is a major cause of foodborne illness in the United States, and antimicrobial-resistant strains pose a serious threat to public health. We used Bayesian hierarchical models of culture-confirmed infections during 2004-2016 from 2 Centers for Disease Control and Prevention surveillance systems to estimate changes in the national incidence of resistant nontyphoidal Salmonella infections. Extrapolating to the United States population and accounting for unreported infections, we estimated a 40% increase in the annual incidence of infections with clinically important resistance (resistance to ampicillin or ceftriaxone or nonsusceptibility to ciprofloxacin) during 2015-2016 (≈222,000 infections) compared with 2004-2008 (≈159,000 infections). Changes in the incidence of resistance varied by serotype. Serotypes I 4,[5],12:i:- and Enteritidis were responsible for two thirds of the increased incidence of clinically important resistance during 2015-2016. Ciprofloxacin-nonsusceptible infections accounted for more than half of the increase. These estimates can help in setting targets and priorities for prevention.


Subject(s)
Anti-Bacterial Agents , Salmonella Infections , Bayes Theorem , Humans , Incidence , Microbial Sensitivity Tests , United States
19.
Emerg Infect Dis ; 27(1): 182-195, 2021 01.
Article in English | MEDLINE | ID: mdl-33350907

ABSTRACT

Illnesses transmitted by food and water cause a major disease burden in the United States despite advancements in food safety, water treatment, and sanitation. We report estimates from a structured expert judgment study using 48 experts who applied Cooke's classical model of the proportion of disease attributable to 5 major transmission pathways (foodborne, waterborne, person-to-person, animal contact, and environmental) and 6 subpathways (food handler-related, under foodborne; recreational, drinking, and nonrecreational/nondrinking, under waterborne; and presumed person-to-person-associated and presumed animal contact-associated, under environmental). Estimates for 33 pathogens were elicited, including bacteria such as Salmonella enterica, Campylobacter spp., Legionella spp., and Pseudomonas spp.; protozoa such as Acanthamoeba spp., Cyclospora cayetanensis, and Naegleria fowleri; and viruses such as norovirus, rotavirus, and hepatitis A virus. The results highlight the importance of multiple pathways in the transmission of the included pathogens and can be used to guide prioritization of public health interventions.


Subject(s)
Foodborne Diseases , Animals , Food Microbiology , Food Safety , Foodborne Diseases/epidemiology , Judgment , United States/epidemiology , Water
20.
Emerg Infect Dis ; 27(1): 214-222, 2021 01.
Article in English | MEDLINE | ID: mdl-33350919

ABSTRACT

Foodborne illness source attribution is foundational to a risk-based food safety system. We describe a method for attributing US foodborne illnesses caused by nontyphoidal Salmonella enterica, Escherichia coli O157, Listeria monocytogenes, and Campylobacter to 17 food categories using statistical modeling of outbreak data. This method adjusts for epidemiologic factors associated with outbreak size, down-weights older outbreaks, and estimates credibility intervals. On the basis of 952 reported outbreaks and 32,802 illnesses during 1998-2012, we attribute 77% of foodborne Salmonella illnesses to 7 food categories (seeded vegetables, eggs, chicken, other produce, pork, beef, and fruits), 82% of E. coli O157 illnesses to beef and vegetable row crops, 81% of L. monocytogenes illnesses to fruits and dairy, and 74% of Campylobacter illnesses to dairy and chicken. However, because Campylobacter outbreaks probably overrepresent dairy as a source of nonoutbreak campylobacteriosis, we caution against using these Campylobacter attribution estimates without further adjustment.


Subject(s)
Campylobacter Infections , Foodborne Diseases , Gastroenteritis , Listeria monocytogenes , Animals , Campylobacter Infections/epidemiology , Cattle , Disease Outbreaks , Food Microbiology , Foodborne Diseases/epidemiology , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...