Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Macromol Rapid Commun ; 45(12): e2300724, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485136

ABSTRACT

Luminescent solar concentrators (LSCs) are spectral conversion devices offering interesting opportunities for the integration of photovoltaics into the built environment and portable systems. The Förster-resonance energy transfer (FRET) process can boost the optical response of LSCs by reducing energy losses typically associated to non-radiative processes occurring within the device under operation. In this work, a new class of FRET-based thin-film LSC devices is presented, in which the synthetic versatility of linear polyurethanes (PU) is exploited to control the photophysical properties and the device performance of the resulting LSCs. A series of luminescent linear PUs are synthesized in the presence of two novel bis-hydroxyl-functionalized luminophores of suitable optical properties, used as chain extenders during the step-growth polyaddition reaction for the formation of the linear macromolecular network. By synthetically tuning their composition, the obtained luminescent PUs can achieve a high energy transfer efficiency (≈90%) between the covalently linked luminophores. The corresponding LSC devices exhibit excellent photonic response, with external and internal photon efficiencies as high as ≈4% and ≈37%, respectively. Furthermore, their optimized power conversion efficiency combined with their enhanced average visible-light transmittance highlight their suitability for potential use as transparent solar energy devices.


Subject(s)
Energy Transfer , Fluorescence Resonance Energy Transfer , Polyurethanes , Solar Energy , Polyurethanes/chemistry , Luminescence , Molecular Structure
2.
ACS Appl Polym Mater ; 6(2): 1191-1203, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38299121

ABSTRACT

In this work, a series of biobased phenolic resins were developed starting from kraft and soda lignin, suitably functionalized through esterification by means of succinic anhydride. As a result of an extensive optimization study of the functionalization and curing reactions, clear correlations between lignin type and chemical-physical characteristics and the properties of the resulting phenolic resin systems were described. In particular, the esterification reaction through succinic anhydride was found to play a key role in enhancing the chemical reactivity and in facilitating the successful incorporation of lignin into the resin formulations. The obtained high-lignin-content thermoset materials were shown to exhibit tunable chemical (functionality, gel content, and cross-linking density), thermal (glass transition temperature and thermo-oxidative stability), and mechanical (surface hardness, indentation modulus, and creep behavior) characteristics, which could outperform those of fully oil-based reference phenolic resins by judicious control of lignin concentration and chemical characteristics. In particular, succinylated kraft lignin was found to enable more efficient incorporation into the cured systems. This work provides the first demonstration of the incorporation of succinic-anhydride-modified-lignin in the formulation of high-performance phenolic resins, ultimately contributing to the definition of structure-property-performance correlations for rational biobased material design in the context of advanced and sustainable manufacturing.

3.
ACS Sustain Chem Eng ; 11(18): 7193-7202, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37180028

ABSTRACT

Polyurethane (PU) coatings with high lignin content and tunable properties were made using a combination of fractionation and partial catalytic depolymerization as a novel strategy to tailor lignin molar mass and hydroxyl group reactivity, the key parameters for use in PU coatings. Acetone organosolv lignin obtained from pilot-scale fractionation of beech wood chips was processed at the kilogram scale to produce lignin fractions with specific molar mass ranges (Mw 1000-6000 g/mol) and reduced polydispersity. Aliphatic hydroxyl groups were distributed relatively evenly over the lignin fractions, allowing detailed study of the correlation between lignin molar mass and hydroxyl group reactivity using an aliphatic polyisocyanate linker. As expected, the high molar mass fractions exhibited low cross-linking reactivity, yielding rigid coatings with a high glass transition temperature (Tg). The lower Mw fractions showed increased lignin reactivity, extent of cross-linking, and gave coatings with enhanced flexibility and lower Tg. Lignin properties could be further tailored by lignin partial depolymerization by reduction (PDR) of the beech wood lignin and its high molar mass fractions; excellent translation of the PDR process was observed from laboratory to the pilot scale necessary for coating applications in prospective industrial scenarios. Lignin depolymerization significantly improved lignin reactivity, and coatings produced from PDR lignin showed the lowest Tg values and highest coating flexibility. Overall, this study provides a powerful strategy for the production of PU coatings with tailored properties and high (>90%) biomass content, paving the path to the development of fully green and circular PU materials.

4.
ACS Appl Polym Mater ; 5(1): 828-838, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36660254

ABSTRACT

In this work, a series of bio-based epoxy vitrimers were developed by reacting diglycidyl ether of bisphenol A (DGEBA) and bio-based 2,5-furandicarboxylic acid (FDCA) at different molar ratios. Triazabicyclodecene was used as a transesterification catalyst to promote thermally induced exchange reactions. Differential scanning calorimetry, gel content measurements, and Fourier transform infrared spectroscopy were used to study the FDCA-DGEBA crosslinking reaction. The transesterification exchange reaction kinetics of such crosslinked systems was characterized via stress relaxation tests, evidencing an Arrhenius-type dependence of the relaxation time on temperature, and an activation energy of the dynamic rearrangement depending on the molar composition. In addition, self-healing, thermoformability, and mechanical recycling were demonstrated for the composition showing the faster topology rearrangement, namely, the FDCA/DGEBA molar ratio equal to 0.6. This work provides the first example of bio-based epoxy vitrimers incorporating FDCA, making these systems of primary importance in the field of reversible, high-performance epoxy materials for future circular economy scenarios.

5.
Molecules ; 27(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36558011

ABSTRACT

In the present work, rice husks (RHs), which, worldwide, represent one of the most abundant agricultural wastes in terms of their quantity, have been treated and fractionated in order to allow for their complete valorization. RHs coming from the raw and parboiled rice production have been submitted at first to a hydrothermal pretreatment followed by a deep eutectic solvent fractionation, allowing for the separation of the different components by means of an environmentally friendly process. The lignins obtained from raw and parboiled RHs have been thoroughly characterized and showed similar physico-chemical characteristics, indicating that the parboiling process does not introduce obvious lignin alterations. In addition, a preliminary evaluation of the potentiality of such lignin fractions as precursors of cement water reducers has provided encouraging results. A fermentation-based optional preprocess has also been investigated. However, both raw and parboiled RHs demonstrated a poor performance as a microbiological growth substrate, even in submerged fermentation using cellulose-degrading fungi. The described methodology appears to be a promising strategy for the valorization of these important waste biomasses coming from the rice industry towards a circular economy perspective.


Subject(s)
Lignin , Oryza , Lignin/chemistry , Oryza/chemistry , Deep Eutectic Solvents , Cellulose , Solvents/chemistry , Biomass , Hydrolysis
6.
ACS Appl Polym Mater ; 4(5): 3855-3865, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35601462

ABSTRACT

In this study, biobased gel polymer electrolyte (GPE) membranes were developed via the esterification reaction of a cardanol-based epoxy resin with glutaric anhydride, succinic anhydride, and hexahydro-4-methylphthalic anhydride. Nonisothermal differential scanning calorimetry was used to assess the optimal curing time and temperature of the formulations, evidencing a process activation energy of ∼65-70 kJ mol-1. A rubbery plateau modulus of 0.65-0.78 MPa and a crosslinking density of 2 × 10-4 mol cm-3 were found through dynamic mechanical analysis. Based on these characteristics, such biobased membranes were tested for applicability as GPEs for potassium-ion batteries (KIBs), showing an excellent electrochemical stability toward potassium metal in the -0.2-5 V voltage range and suitable ionic conductivity (10-3 S cm-1) at room temperature. This study demonstrates the practical viability of these biobased materials as efficient GPEs for the fabrication of KIBs, paving the path to increased sustainability in the field of next-generation battery technologies.

7.
ChemSusChem ; 15(12): e202200294, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35363435

ABSTRACT

Potassium batteries show interesting peculiarities as large-scale energy storage systems and, in this scenario, the formulation of polymer electrolytes obtained from sustainable resources or waste-derived products represents a milestone activity. In this study, a lignin-based membrane is designed by crosslinking a pre-oxidized Kraft lignin matrix with an ethoxylated difunctional oligomer, leading to self-standing membranes that are able to incorporate solvated potassium salts. The in-depth electrochemical characterization highlights a wide stability window (up to 4 V) and an ionic conductivity exceeding 10-3  S cm-1 at ambient temperature. When potassium metal cell prototypes are assembled, the lignin-based electrolyte attains significant electrochemical performances, with an initial specific capacity of 168 mAh g-1 at 0.05 A g-1 and an excellent operation for more than 200 cycles, which is an unprecedented outcome for biosourced systems in potassium batteries.


Subject(s)
Polymers , Potassium , Electric Power Supplies , Electrolytes/chemistry , Lignin/chemistry , Polymers/chemistry , Waste Products
8.
ACS Sustain Chem Eng ; 9(25): 8550-8560, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34239783

ABSTRACT

In the quest for sustainable materials for quasi-solid-state (QS) electrolytes in aqueous dye-sensitized solar cells (DSSCs), novel bioderived polymeric membranes were prepared in this work by reaction of preoxidized kraft lignin with poly(ethylene glycol)diglycidylether (PEGDGE). The effect of the PEGDGE/lignin relative proportions on the characteristics of the obtained membranes was thoroughly investigated, and clear structure-property correlations were highlighted. In particular, the glass transition temperature of the materials was found to decrease by increasing the amount of PEGDGE in the formulation, indicating that polyethylene glycol chains act as flexible segments that increase the molecular mobility of the three-dimensional polymeric network. Concurrently, their swelling ability in liquid electrolyte was found to increase with the concentration of PEGDGE, which was also shown to influence the ionic transport efficiency within the membrane. The incorporation of these lignin-based cross-linked systems as QS electrolyte frameworks in aqueous DSSCs allowed the preparation of devices with excellent long-term stability under UV-vis light, which were found to be superior to benchmark QS-DSSCs incorporating state-of-the-art carboxymethylcellulose membranes. This study provides the first demonstration of lignin-based QS electrolytes for stable aqueous DSSCs, establishing a straightforward strategy to exploit the potential of lignin as a functional polymer precursor for the field of sustainable photovoltaic devices.

9.
RSC Adv ; 11(47): 29786-29796, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479540

ABSTRACT

Novel host matrices based on fluoropolymers blended with poly(methyl methacrylate) (PMMA) are presented in this work for application in efficient and photochemically stable thin-film luminescent solar concentrators (LSCs). These systems consist of blends of PMMA with three different partially fluorinated polymers in different proportions: polyvinylidenefluoride homopolymer, a copolymer of vinylidenefluoride and chloro-trifluoro-ethylene, and a terpolymer of vinylidenefluoride, hexafluoropropylene and hydroxyl-ethyl acetate. A detailed chemical, physical and structural characterization of the obtained materials allowed us to shed light on the structure-property relationships underlying the response of such blends as a LSC component, revealing the effect of the degree of crystallinity of the polymers on their functional characteristics. An optimization study of the optical and photovoltaic (PV) performance of these fluoropolymer-based LSC systems was carried out by investigating the effect of blend chemical composition, luminophore concentration and film thickness on LSC device output. LSCs featuring copolymer/PMMA blends as the host matrix were found to outperform their homopolymer- and terpolymer-based blend counterparts, attaining efficiencies comparable to those of reference PMMA-based LSC/PV assemblies. All optimized LSC systems were subjected to weathering tests for over 1000 h of continuous light exposure to evaluate the effect of the host matrix system on LSC performance decline and to correlate chemical composition with photochemical durability. It was found that all fluoropolymer/PMMA-based LSCs outperformed reference PMMA-based LSCs in terms of long-term operational lifetime. This work provides the first demonstration of thermoplastic fluoropolymer/PMMA blends for application as host matrices in efficient and stable LSCs and widens the scope of high-performance thermoplastic materials for the PV field.

10.
Molecules ; 25(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32586065

ABSTRACT

Technical lignins, typically obtained from the biorefining of lignocellulosic raw materials, represent a highly abundant natural aromatic feedstock with high potential in a sustainable economy scenario, especially considering the huge primary production volumes and the inherently renewable nature of this resource. One of the main drawbacks in their full exploitation is their high variability and heterogeneity in terms of chemical composition and molecular weight distribution. Within this context, the availability of effective and robust fractionation processes represents a key requirement for the effective valorization of lignin. In the present work, a multistep fractionation of two different well known technical lignins obtained from two distinct delignification processes (soda vs. kraft pulping) was described. A comprehensive approach combining solvent extraction in organic or aqueous medium with membrane-assisted ultrafiltration was developed in order to maximize the process versatility. The obtained lignin fractions were thoroughly characterized in terms of their chemical, physical, thermal, and structural properties, highlighting the ability of the proposed approach to deliver consistent and reproducible fractions of well-controlled and predictable characteristics, irrespective of their biomass origin. The results of this study demonstrate the versatility and the reliability of this integrated multistep fractionation method, which can be easily adapted to different solvent media using the same ultrafiltration membrane set up, thereby enhancing the potential applicability of this approach in an industrial scale-up perspective for a large variety of starting raw lignins.


Subject(s)
Chemical Fractionation/methods , Lignin/chemistry , Membranes, Artificial , Solvents/chemistry , Ultrafiltration/methods , Calorimetry, Differential Scanning , Chromatography, Gel , Gas Chromatography-Mass Spectrometry , Hydroxylation , Magnetic Resonance Spectroscopy , Molecular Weight , Solubility , Spectroscopy, Fourier Transform Infrared
11.
ACS Macro Lett ; 9(8): 1167-1171, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-35653208

ABSTRACT

Conjugated semiconducting polymers are key materials enabling plastic (opto)electronic devices. Research in the field has a generally strong focus on the constant improvement of backbone structure and the resulting properties. Comparatively fewer studies are devoted to improving the sustainability of the synthetic route that leads to a material under scrutiny. Exemplified by the two established and commercially available luminescent polymers poly(9,9-dioctylfluorene-alt-bithiophene) (PF8T2) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (PF8BT), this work describes the first examples of efficient Suzuki-Miyaura polycondensations in water, under ambient environment, with minimal amount of organic solvent and with moderate heating. The synthetic approach enables a reduction of the E-factor (mass of organic waste/mass of product) by 1 order of magnitude, without negatively affecting molecular weight, dispersity, chemical structure, or photochemical stability of PF8T2 or PF8BT.

12.
ACS Omega ; 4(3): 4615-4626, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459649

ABSTRACT

A fractionation method for technical lignin was developed, combining organic solvent extraction and membrane ultrafiltration of the solvent soluble component. This method was validated on a commercial wheat straw/Sarkanda grass lignin (Protobind 1000) using 2-butanone (MEK) as the solvent for both the extraction and the ultrafiltration operations. The parent lignin and the different obtained fractions were fully characterized in terms of chemical composition and physicochemical properties by gel permeation chromatography, gas chromatography/mass spectrometry (GC/MS), pyrolysis-GC/MS, total phenol contents, 31P nuclear magnetic resonance (31P NMR), thermogravimetric analysis, differential scanning calorimetry analysis, and Fourier-transform infrared spectroscopy. The results show that the proposed process allows a straightforward recovery of the different lignin fractions as well as a selective control over their molecular mass distribution and related dependent properties. Moreover, the operating flexibility of the Soxhlet/ultrafiltration process allows the treatment of lignins from different feedstocks using the same installation just by modulating the choice of the solvent and the membrane porosity with the best characteristics. This is one of the most important features of the proposed strategy, which represents a new fractionation approach with the potential to improve lignin valorization for materials science and preparative organic chemistry applications.

13.
Mater Sci Eng C Mater Biol Appl ; 103: 109791, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349504

ABSTRACT

The antimicrobial activity represents a cornerstone in the development of biomaterials: it is a leading request in many areas, including biology, medicine, environment and industry. Over the years, different polymeric scaffolds are proposed as solutions, based on the encapsulation of metal ions/particles, antibacterial agents or antibiotics. However, the compliance with the biocompatibility criteria and the concentration of the active principles to avoid under- and over-dosing are being debated. In this work, we propose the synthesis of a versatile hydrogel using branched polyacrylic acid (carbomer 974P) and aliphatic polyetherdiamine (elastamine®) through physico-chemical transition, able to show its ability to counteract the bacterial growth and infections thanks to the polymers used, that are not subjected to further chemical modifications. In particular, the antimicrobial activity is clearly demonstrated against Staphyloccoccus aureus and Candida albicans, two well-known opportunistic pathogens. Moreover, we discuss the hydrogel use as drug carrier to design a unique device able to combine the antibacterial/antimicrobial properties to the controlled drug delivery, as a promising tool for a wide range of biomedical applications.


Subject(s)
Anti-Infective Agents/chemistry , Hydrogels/chemistry , Polymers/chemistry , Acrylic Resins/chemistry , Anti-Infective Agents/pharmacology , Candida albicans/drug effects , Drug Carriers/chemistry , Drug Liberation , Rheology , Staphylococcus aureus/drug effects
14.
Polymers (Basel) ; 11(6)2019 Jun 06.
Article in English | MEDLINE | ID: mdl-31174331

ABSTRACT

Efficient and comprehensive recycling of fiber-reinforced thermosets is particularly challenging, since the irreversible degradation of the matrix component is necessary in order to separate the fiber component in high purity. In this work, a new approach to fully recyclable thermoset composites is presented, based on the thermal reversibility of an epoxy-based polymer network, crosslinked through Diels-Alder (DA) chemistry. Carbon fiber composites, fabricated by compression molding, were efficiently recycled through a simple solvolysis procedure in common solvents, under mild conditions, with no catalysts. Specifically, the purity of reclaimed fibers, assessed by thermogravimetric analysis and scanning electron microscopy, was very high (>95%) and allowed successful reprocessing into second generation composites. Moreover, the dissolved matrix residues were directly employed to prepare smart, thermally healable coatings. Overall, DA chemistry has been shown to provide a convenient strategy towards circular economy of thermoset composites.

15.
Small ; 14(1)2018 01.
Article in English | MEDLINE | ID: mdl-29141120

ABSTRACT

The present work reports the first demonstration of straightforward fabrication of monolithic unibody lab-on-a-chip (ULOCs) integrating bioactive micrometric 3D scaffolds by means of multimaterial stereolithography (SL). To this end, a novel biotin-conjugated photopolymer is successfully synthesized and optimally formulated to achieve high-performance SL-printing resolution, as demonstrated by the SL-fabrication of biotinylated structures smaller than 100 µm. By optimizing a multimaterial single-run SL-based 3D-printing process, such biotinylated microstructures are incorporated within perfusion microchambers whose excellent optical transparency enables real-time optical microscopy analyses. Standard biotin-binding assays confirm the existence of biotin-heads on the surfaces of the embedded 3D microstructures and allow to demonstrate that the biofunctionality of biotin is not altered during the SL-printing, thus making it exploitable for further conjugation with other biomolecules. As a step forward, an in-line optical detection system is designed, prototyped via SL-printing and serially connected to the perfusion microchambers through customized world-to-chip connectors. Such detection system is successfully employed to optically analyze the solution flowing out of the microchambers, thus enabling indirect quantification of the concentration of target interacting biomolecules. The successful application of this novel biofunctional photopolymer as SL-material enables to greatly extend the versatility of SL to directly fabricate ULOCs with intrinsic biofunctionality.


Subject(s)
Lab-On-A-Chip Devices , Printing, Three-Dimensional , Stereolithography , Photochemistry , Polymers/chemistry
16.
Science ; 354(6309): 203-206, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27708051

ABSTRACT

Organometal halide perovskite solar cells have demonstrated high conversion efficiency but poor long-term stability against ultraviolet irradiation and water. We show that rapid light-induced free-radical polymerization at ambient temperature produces multifunctional fluorinated photopolymer coatings that confer luminescent and easy-cleaning features on the front side of the devices, while concurrently forming a strongly hydrophobic barrier toward environmental moisture on the back contact side. The luminescent photopolymers re-emit ultraviolet light in the visible range, boosting perovskite solar cells efficiency to nearly 19% under standard illumination. Coated devices reproducibly retain their full functional performance during prolonged operation, even after a series of severe aging tests carried out for more than 6 months.

17.
Dalton Trans ; 45(27): 11052-60, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27315336

ABSTRACT

This work reports on the design, synthesis and photo-physical properties of two ruthenium σ-alkynyl complexes. It is shown that, despite similar optical absorption features recorded in solution, the introduction of a benzaldehyde moiety leads to an improved non-linear optical (NLO) response as measured by Electric Field Induced Second Harmonic (EFISH) generation and Third Harmonic Generation (THG) at 1.907 µm, both related to the second order hyperpolarizability. These structure-property relationships are rationalized based on few state modelling. Complex is subsequently processed to afford composite films that demonstrate a χ(2) of 1.4 pm V(-1), quite remarkable given the ease of film processing implemented in this work.

18.
Materials (Basel) ; 9(7)2016 Jul 16.
Article in English | MEDLINE | ID: mdl-28773704

ABSTRACT

Glass (GFR) and carbon fiber-reinforced (CFR) dual-cure polymer composites fabricated by UV-assisted three-dimensional (UV-3D) printing are presented. The resin material combines an acrylic-based photocurable resin with a low temperature (140 °C) thermally-curable resin system based on bisphenol A diglycidyl ether as base component, an aliphatic anhydride (hexahydro-4-methylphthalic anhydride) as hardener and (2,4,6,-tris(dimethylaminomethyl)phenol) as catalyst. A thorough rheological characterization of these formulations allowed us to define their 3D printability window. UV-3D printed macrostructures were successfully demonstrated, giving a clear indication of their potential use in real-life structural applications. Differential scanning calorimetry and dynamic mechanical analysis highlighted the good thermal stability and mechanical properties of the printed parts. In addition, uniaxial tensile tests were used to assess the fiber reinforcing effect on the UV-3D printed objects. Finally, an initial study was conducted on the use of a sizing treatment on carbon fibers to improve the fiber/matrix interfacial adhesion, giving preliminary indications on the potential of this approach to improve the mechanical properties of the 3D printed CFR components.

19.
ACS Appl Mater Interfaces ; 5(14): 6628-34, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23841485

ABSTRACT

This article describes the synthesis, characterization, and application of new UV-absorbing microcapsules encapsulating a UV-responsive photochromic dye for application in the damage-sensing field. Microcapsules filled with a photochromic spiropyran, dissolved in sunflower oil as core material, were synthesized by reacting a TDI-based polyisocyanate prepolymer with a benzophenone-based amine to obtain robust UV-absorbing polyurea shells. The newly synthesized UV-screening microcapsules were embedded into a photoresist to realize a new mechanoresponsive polymer. After scratching the coating, the UV-screening microcapsules break and the UV-sensitive core material is released and diffuses into the polymer matrix. Upon exposure to UV-A light, a rapid color change in the region where the damage was made is observed, because of the photoinduced transition of spiropyran to the plane merocyanine form. The novelty of the approach presented in this work lies in the possibility to convert any type of conventional polymeric coating into a UV-light-sensitive mechanoresponsive smart coating by simple addition of our new UV-screening microcapsules.

20.
J Am Chem Soc ; 133(31): 12106-14, 2011 Aug 10.
Article in English | MEDLINE | ID: mdl-21688785

ABSTRACT

The performance of organic photovoltaic (OPV) devices is currently limited by modest short-circuit current densities. Approaches toward improving this output parameter may provide new avenues to advance OPV technologies and the basic science of charge transfer in organic semiconductors. This work highlights how steric control of the charge separation interface can be effectively tuned in OPV devices. By introducing an octylphenyl substituent onto the investigated polymer backbones, the thermally relaxed charge-transfer state, and potentially excited charge-transfer states, can be raised in energy. This decreases the barrier to charge separation and results in increased photocurrent generation. This finding is of particular significance for nonfullerene OPVs, which have many potential advantages such as tunable energy levels and spectral breadth, but are prone to poor exciton separation efficiencies. Computational, spectroscopic, and synthetic methods were combined to develop a structure-property relationship that correlates polymer substituents with charge-transfer state energies and, ultimately, device efficiencies.

SELECTION OF CITATIONS
SEARCH DETAIL
...