Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Stem Cell ; 14(5): 644-57, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24792117

ABSTRACT

A major goal of cell therapy for vascular diseases is to promote revascularization through the injection of endothelial stem/progenitor cells. The gene regulatory mechanisms that underlie endothelial progenitor-mediated vascular repair, however, remain elusive. Here, we identify the transcription factor TAL1/SCL as a key mediator of the vascular repair function of primary human endothelial colony-forming cells (ECFCs). Genome-wide analyses in ECFCs demonstrate that TAL1 activates a transcriptional program that promotes cell adhesion and migration. At the mechanistic level, we show that TAL1 upregulates the expression of migratory and adhesion genes through recruitment of the histone acetyltransferase p300. Based on these findings, we establish a strategy that enhances the revascularization efficiency of ECFCs after ischemia through ex vivo priming with the histone deacetylase inhibitor TSA. Thus, small molecule epigenetics drugs are effective tools for modifying the epigenome of stem/progenitor cells prior to transplantation as a means to enhance their therapeutic potential.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Hydroxamic Acids/pharmacology , Proto-Oncogene Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Chromatin Immunoprecipitation , Endothelial Progenitor Cells/cytology , Epigenesis, Genetic/genetics , Genome-Wide Association Study , Humans , Proto-Oncogene Proteins/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL
...