Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Toxicol Environ Health A ; 87(1): 1-21, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37830742

ABSTRACT

The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.


Subject(s)
Cyprinidae , Gastrointestinal Microbiome , Killifishes , Microbiota , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Killifishes/genetics , Petroleum/toxicity , Petroleum Pollution/adverse effects , RNA, Ribosomal, 16S , Hydrocarbons , Gulf of Mexico , Water Pollutants, Chemical/toxicity
2.
Aquat Toxicol ; 251: 106267, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36058102

ABSTRACT

DNA methylation is an important epigenetic mark involved in modulating transcription. While multiple studies document the ability of environmental stressors to alter methylation patterns, there is little information regarding the effects of oil and hypoxia on the methylome. Oil and hypoxic stress are threats in coastal ecosystems, which act as nursery habitats for developing fish. To explore the methylation altering effects of oil and hypoxia on developing fish, we exposed larval Cyprinodon variegatus to oil, hypoxia, or both for 48 h followed by 48 h of depuration in clean, normoxic conditions. We then used immunoprecipitation coupled with high-throughput sequencing (MeDIP seq) to evaluate genome-wide methylation changes. We also performed RNA seq to associate methylation and altered transcription. Oil and hypoxia together elicited greater impacts to methylation than either stressor individually. Additionally, the oil+hypoxia treatment exhibited an overlap between differentially methylated regions and differential gene expression at 20 loci. Functional analyses of these loci revealed enrichment of processes related to neurological function and development. Two neurological genes (slc1a2, asxl2) showed altered methylation of promoter CpG islands and transcriptional changes, suggesting epigenetic modulation of gene expression. Our results suggest a possible mechanism explaining altered behavior patterns noted in fish following oil exposure.


Subject(s)
Killifishes , Water Pollutants, Chemical , Animals , DNA Methylation , Ecosystem , Hypoxia/genetics , Larva/genetics , Water Pollutants, Chemical/toxicity
3.
Microbiol Spectr ; 10(1): e0058721, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35080447

ABSTRACT

The fish external microbiota competitively excludes primary pathogens and prevents the proliferation of opportunists. A shift from healthy microbiota composition, known as dysbiosis, may be triggered by environmental stressors and increases host susceptibility to disease. The Deepwater Horizon (DWH) oil spill was a significant stressor event in the Gulf of Mexico. Despite anecdotal reports of skin lesions on fishes following the oil spill, little information is available on the impact of dispersed oil on the fish external microbiota. In this study, juvenile red snapper (Lutjanus campechanus) were exposed to a chemically enhanced water-accommodated fraction (CEWAF) of Corexit 9500/DWH oil (CEWAF) and/or the bacterial pathogen Vibrio anguillarum in treatments designed to detect changes in and recovery of the external microbiota. In fish chronically exposed to CEWAF, immunoglobulin M (IgM) expression significantly decreased between 2 and 4 weeks of exposure, coinciding with elevated liver total polycyclic aromatic hydrocarbons (PAHs). Dysbiosis was detected on fish chronically exposed to CEWAF compared to seawater controls, and addition of a pathogen challenge altered the final microbiota composition. Dysbiosis was prevented by returning fish to clean seawater for 21 days after 1 week of CEWAF exposure. Four fish exhibited lesions during the trial, all of which were exposed to CEWAF but not all of which were exposed to V. anguillarum. This study indicates that month-long exposure to dispersed oil leads to dysbiosis in the external microbiota. As the microbiota is vital to host health, these effects should be considered when determining the total impacts of pollutants in aquatic ecosystems. IMPORTANCE Fish skin is an immunologically active tissue. It harbors a complex community of microorganisms vital to host homeostasis as, in healthy fish, they competitively exclude pathogens found in the surrounding aquatic environment. Crude oil exposure results in immunosuppression in marine animals, altering the relationship between the host and its microbial community. An alteration of the healthy microbiota, a condition known as dysbiosis, increases host susceptibility to pathogens. Despite reports of external lesions on fishes following the DWH oil spill and the importance of the external microbiota to fish health, there is little information on the effect of dispersed oil on the external microbiota of fishes. This research provides insight into the impact of a stressor event such as an oil spill on dysbiosis and enhances understanding of long-term sublethal effects of exposure to aid in regulatory decisions for protecting fish populations during recovery.


Subject(s)
Dysbiosis/veterinary , Microbiota/drug effects , Perciformes/microbiology , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dysbiosis/etiology , Dysbiosis/microbiology , Gulf of Mexico , Lipids/toxicity , Liver/drug effects , Liver/metabolism , Perciformes/metabolism , Petroleum/analysis , Petroleum/metabolism , Petroleum Pollution/adverse effects , Skin/metabolism , Skin/microbiology , Water Pollutants, Chemical/metabolism
4.
Chemosphere ; 288(Pt 1): 132482, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34627815

ABSTRACT

Following the Deepwater Horizon oil spill in April 2010, much research has been conducted on the cardiotoxic effects of oil on fish. Sensitive life history stages, such as the embryonic period, have been targeted to elucidate the effects of polycyclic aromatic hydrocarbons (PAHs) on the developing cardiovascular systems of fish. However, much of this research has focused on rapidly developing pelagic species, with little emphasis on estuarine species with longer embryological periods. Moreover, previous studies have used heart rate as the primary endpoint to measure cardiac performance in embryos and larvae; an endpoint that on its own may overlook impairment in cardiac performance. This study aims to fill these knowledge gaps and provide a more holistic approach for assessing the effects of PAHs on cardiac function by exposing sheepshead minnow (Cyprinodon variegatus) embryos to two oil doses (150 and 300 µg/L tPAH nominally) throughout embryonic development and measuring cardiac responses through the identification of cardiotoxic phenotypes (pericardial edema) as well as calculation of cardiac output at 4 days post fertilization. Results of this study show significant increases in pericardial edema at both oil doses relative to controls as well as significantly reduced cardiac output - driven by reductions in ventricular stroke volume. This study is one of the first to assess cardiac output in embryonic fish exposed to oil and methods described here allow for more physiologically relevant measures of cardiac performance in early life stages through established and non-invasive measures.


Subject(s)
Cyprinidae , Killifishes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Petroleum Pollution/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
5.
J Toxicol Environ Health B Crit Rev ; 24(8): 355-394, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34542016

ABSTRACT

In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.


Subject(s)
Environmental Exposure/adverse effects , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/toxicity , Animals , Birds , Environmental Monitoring/methods , Fishes , Humans , Multiple Organ Failure/etiology , Petroleum/toxicity , Turtles , Vertebrates
6.
Article in English | MEDLINE | ID: mdl-33892309

ABSTRACT

Increased nutrient loading has led to eutrophication of coastal shelf waters which has resulted in increased prevalence of persistent hypoxic zones - areas in which the dissolved oxygen content of the water drops below 2 mg/L. The northern Gulf of Mexico, fed primarily by the Mississippi River watershed, undergoes annual establishment of one of the largest hypoxic zones in the world. Exposure to hypoxia can induce physiological impacts in fish cardiac systems that include bradycardia, changes in stroke volume, and altered cardiovascular vessel development. While these impacts have been addressed at the functional level, there is little information regarding the molecular basis for these changes. This study used transcriptomic analysis techniques to interrogate the effects of hypoxia exposure on the developing cardiovascular system in newly hatched larvae of two estuarine species that occupy the same ecological niche - the sheepshead minnow (Cyprinodon variegatus) and the Gulf killifish (Fundulus grandis). Results suggest that while differential gene expression is largely distinct between the two species, downstream impacts on pathways and functional responses such as reduced cardiac hypertrophy, modulation of blood pressure, and increased incidence of apoptosis appear to be conserved. Further, differences in the magnitude of these conserved responses may suggest that the length of embryonic development could impart a level of resiliency to hypoxic perturbation in early life stage fish.


Subject(s)
Fish Proteins/genetics , Gene Expression Regulation, Developmental , Heart/physiopathology , Hypoxia/physiopathology , Killifishes/genetics , Larva/genetics , Transcriptome , Animals , Fish Proteins/metabolism , Killifishes/classification , Killifishes/growth & development , Larva/growth & development
7.
Environ Res ; 196: 110960, 2021 05.
Article in English | MEDLINE | ID: mdl-33675801

ABSTRACT

Galaxolide (HHCB) and tonalide (AHTN) are polycyclic musk compounds (PMCs) used in household and personal care products that have been included on the list as emerging contaminants of environmental concern due to their ubiquity in aquatic and terrestrial environments. There still exists a dearth of information on the neurotoxicity and endocrine disrupting effects of these contaminants, especially for marine and estuarine species. Here, we assessed the neuroendocrine effects of HHCB and AHTN using adult clams, Ruditapes philippinarum, and yolk-sac larvae of sheepshead minnow, Cyprinodon variegatus. The clams were treated with concentrations (0.005-50 µg/L) of each compound for 21 days. Meanwhile, sheepshead minnow larvae were exposed to 0.5, 5 and 50 µg/L of HHCB and AHTN for 3 days. Enzyme activities related to neurotoxicity (acetylcholinesterase - AChE), neuroendocrine function (cyclooxygenase - COX), and energy reserves (total lipids - TL) were assessed in R. philippinarum. Gene expression levels of cyp19 and vtg1 were measured in C. variegatus using qPCR. Our results indicated induction of AChE and COX in the clams exposed to HHCB while AHTN exposure significantly inhibited AChE and COX. Gene expression of cyp19 and vtg1 in yolk-sac C. variegatus larvae exposed to 50 µg/L AHTN was significantly downregulated versus the control. The results of this study demonstrate that HHCB and AHTN might pose neurotoxic and endocrine disrupting effects in coastal ecosystems.


Subject(s)
Ecosystem , Water Pollutants, Chemical , Adult , Benzopyrans , Humans , Tetrahydronaphthalenes/analysis , Tetrahydronaphthalenes/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
8.
Article in English | MEDLINE | ID: mdl-33249265

ABSTRACT

Understanding the effects of oil exposure on early life stage fish species is critical to fully assessing the environmental impacts of oil spills. Oil released from the 2010 Deepwater Horizon spill reached habitats where estuarine fish routinely spawn. In addition, estuaries are highly dynamic environments, therefore, fish in these areas are routinely exposed to varying salinity and dissolved oxygen (DO) levels, each of which are known to modulate transcriptional responses. Fish exposed to oil often display altered immune competence, and several studies have shown that Deepwater Horizon oil in particular causes modulation of various immune functions. However, few studies have directly examined how environmental parameters may affect oil-induced immunomodulation, particularly in early life stage fishes when the immune system is still developing. To this end, we examined transcriptional patterns of immune genes and pathways in Fundulus grandis larvae to various oil (0, 15 µg/L), salinity (3, 30 ppt), and DO (2.5, 6 mg/L) regimes in a fully factorial design. Our results suggest that immune pathways are generally activated in all treatment groups with the exception of the Low Salinity/No Oil/Hypoxia treatment where immune pathways are largely suppressed, and the High Salinity/No Oil/Hypoxia treatment where pathways are unchanged. The High Salinity/Oil/Hypoxia treatment had the largest number of enriched immune pathways (44 as defined by IPA and 43 as defined by ConsensusPathDB), indicating that oil under certain environmental conditions has the potential to further modulate immune-related genes, pathways, and responses in fish.


Subject(s)
Fundulidae/growth & development , Oxygen/metabolism , Petroleum Pollution/adverse effects , Water Pollutants, Chemical/adverse effects , Animals , Fundulidae/genetics , Fundulidae/immunology , Gene Expression Regulation, Developmental/drug effects , Immunity/drug effects , Larva/drug effects , Larva/genetics , Larva/growth & development , Larva/immunology , Oxygen/immunology , Salinity , Transcriptome/drug effects
9.
Aquat Toxicol ; 230: 105716, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310673

ABSTRACT

To obtain a deeper understanding of the transcriptomic responses to oil in southern flounder (Paralichthys lethostigma), we performed quantitative PCR and RNA sequencing on liver and gill tissue after a chronic exposure (35 days) to Deepwater Horizon crude oiled sediment and after a 30-day recovery period. We wanted to understand which specific genes are differentially expressed in liver and gill tissues directly after oiled sediment exposure and with the addition of a recovery period. Furthermore, we wanted to examine specific enriched pathways in these two tissues to determine the impact of exposure with and without a recovery period on biological processes (e.g. immune function). Liver and gill tissues were chosen because they represent two distinct organs that are highly important to consider when examining the impacts of oiled sediment exposure. The liver is the classic detoxification organ, while the gill is in direct contact with sediment in benthic fishes. Examination of these two tissues, therefore, generates a broad understanding of the transcriptomic consequences of oil exposure across an organism. Gene expression for interleukin 8 (il8) and interleukin 1B (il1ß) was significantly increased versus control measurements for fish exposed to oiled sediments for 35 days in gill tissue. Hierarchical clustering of gene expression showed that tissue type was the main driver of gene expression (rather than treatment). The inclusion of a 30-day post-exposure recovery period showed a return of il8 and il1ß gene expression in the gill to baseline expression levels. However, the recovery period increased the number of differentially expressed genes and significantly affected canonical pathways in both tissue types. Pathways related to cholesterol biosynthesis were significantly suppressed in oil-exposed flounder with a recovery period, but not in the exposed flounder without a recovery period. At the end of the exposure, 17 pathways were significantly affected in the gill, including thyroid hormone metabolism-related pathways, which were the most influenced. Liver tissue from the recovered fish had the greatest number of enriched pathways for any tissue or time point (187). Cellular and humoral immune response pathways were considerably impacted in the liver after the recovery period, suggesting that the immune system was attempting to respond to potential damage caused from the chronic oil exposure. Our results demonstrate that liver and gill tissues from southern flounder were differentially altered by Deepwater Horizon oiled sediment exposure and that a 30-day recovery period after exposure substantially shifted gene expression and canonical pathway profiles.


Subject(s)
Flounder/genetics , Geologic Sediments/chemistry , Petroleum Pollution/adverse effects , Petroleum/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Computational Biology , Gills/chemistry , Gills/drug effects , Gulf of Mexico , Liver/chemistry , Liver/drug effects
10.
Sci Total Environ ; 752: 142156, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33207514

ABSTRACT

Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. Many studies have identified the toxicological effects of PAHs in estuarine and marine fishes, however, only recently has work begun to identify the combinatorial effect of PAHs and abiotic environmental factors such as hypoxia, salinity, and temperature. This study aims to characterize the combined effects of abiotic stressors and PAH exposure on the cardiac transcriptomes of developing Fundulus grandis larvae. In this study, F. grandis larvae were exposed to varying environmental conditions (dissolved oxygen (DO) 2, 6 ppm; temperature 20, 30 °C; and salinity 3, 30 ppt) as well as to a single concentration of high energy water accommodated fraction (HEWAF) (∑PAHs 15 ppb). Whole larvae were sampled for RNA and transcriptional changes were quantified using RNA-Seq followed by qPCR for a set of target genes. Analysis revealed that exposure to oil and abiotic stressors impacts signaling pathways associated with cardiovascular function. Specifically, combined exposures appear to reduce development of the systemic vasculature as well as strongly impact the cardiac musculature through cardiomyocyte proliferation resulting in inhibited cardiac function and modulated blood pressure maintenance. Results of this study provide a holistic view of impacts of PAHs and common environmental stressors on the cardiac system in early life stage estuarine species. To our knowledge, this study is one of the first to simultaneously manipulate oil exposure with abiotic factors (DO, salinity, temperature) and the first to analyze cardiac transcriptional responses under these co-exposures.


Subject(s)
Fundulidae , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Fundulidae/genetics , Petroleum Pollution/adverse effects , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Transcriptome , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Sci Rep ; 10(1): 10605, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32606384

ABSTRACT

Oyster reefs are vital to estuarine health, but they experience multiple stressors and globally declining populations. This study examined effects of hypoxia and tributyltin (TBT) on adult Eastern oysters (Crassostrea virginica) exposed either in the laboratory or the field following a natural hypoxic event. In the laboratory, oysters were exposed to either hypoxia followed by a recovery period, or to hypoxia combined with TBT. mRNA expression of HIF1-α and Tß-4 along with hemocyte counts, biomarkers of hypoxic stress and immune health, respectively, were measured. In field-deployed oysters, HIF1-α and Tß-4 expression increased, while no effect on hemocytes was observed. In contrast, after 6 and 8 days of laboratory-based hypoxia exposure, both Tß-4 expression and hemocyte counts declined. After 8 days of exposure to hypoxia + TBT, oysters substantially up-regulated HIF1-α and down-regulated Tß-4, although hemocyte counts were unaffected. Results suggest that hypoxic exposure induces immunosuppression which could increase vulnerability to pathogens.


Subject(s)
Crassostrea , Gene Expression/drug effects , Hemocytes/metabolism , Hypoxia/metabolism , RNA, Messenger/metabolism , Trialkyltin Compounds/pharmacology , Animals , Hemocytes/drug effects , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , RNA, Messenger/genetics
12.
Sci Total Environ ; 732: 139125, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32438143

ABSTRACT

Aquatic contamination, oil spills in particular, could lead to the accumulation of antibiotic resistance by promoting selection for and/or transfer of resistance genes. However, there have been few studies on antibiotic resistance in marine mammals in relation to environmental disturbances, specifically oil contaminations. Here we initiated a study on antibiotic resistance bacteria in bottlenose dolphins Tursiops truncatus in relation to oil contamination following the 2010 BP Oil Spill in the northern Gulf of Mexico. Bacterial communities and antibiotic resistance prevalence one year after the 2010 BP Oil Spill were compared between Barataria Bay (BB) and Sarasota Bay (SB) by applying the rarefaction curve method, and (generalized) linear mixed models. The results showed that the most common bacteria included Vibrio, Shewanella, Bacillus and Pseudomonas. The prevalence of antibiotic resistance was high in the bacterial isolates at both bays. Though bacterial diversity did not differ significantly among water or dolphin samples, and antibiotic resistance did not differ significantly among water samples between the two bays, antibiotic resistance and multi-drug resistance in dolphin samples was significantly higher in the BB than in the SB, mainly attributed to the resistance to E, CF, FEP and SXT. We also found sulfamethoxazole-trimethoprim-resistant Stenotrophomonas maltophilia the first time in the natural aquatic environment. The higher antibiotic resistance in the dolphins in BB is likely attributed to 2010 BP Oil Spill as we expected SB, a more urbanized bay area, would have had higher antibiotic resistance based on the previous studies. The antibiotic resistance data gathered in this research will fill in the important data gaps and contributes to the broader spatial-scale emerging studies on antibiotic resistance in aquatic environments.


Subject(s)
Bottle-Nosed Dolphin , Animals , Bacteria , Drug Resistance, Bacterial , Gulf of Mexico , Petroleum Pollution
13.
Environ Pollut ; 263(Pt B): 114325, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32240905

ABSTRACT

Because oil spills frequently occur in coastal regions that serve as spawning habitat, characterizing the effects of oil in estuarine fish carries both economic and environmental importance. There is a breadth of research investigating the effects of crude oil on fish, however few studies have addressed how transcriptional responses to oil change throughout development or how these responses might be conserved across taxa. To investigate these effects, we performed RNA-seq and pathway analysis following oil exposure 1) in a single estuarine species (Cyprinodon variegatus) at three developmental time points (embryos, yolk-sack larvae, free-feeding larvae), and 2) in two ecologically similar species (C. variegatus and Fundulus grandis), immediately post-hatch (yolk-sack stage). Our results indicate that C. variegatus embryos mount a diminished transcriptional response to oil compared to later stages, and that few transcriptional responses are conserved throughout development. Pathway analysis of larval C. variegatus revealed dysregulation of similar biological processes at later larval stages, including alteration of cholesterol biosynthesis pathways, cardiac development processes, and immune functions. Our cross-species comparison showed that F. grandis exhibited a reduced transcriptional response compared to C. variegatus. Pathway analysis revealed that the two species shared similar immune and cardiac responses, however pathways related to cholesterol biosynthesis exhibited a divergent response as they were activated in C. variegatus but inhibited in F. grandis. Our results suggest that examination of larval stages may provide a more sensitive estimate of oil-impacts than examination of embryos, and challenge assumptions that ecologically comparable species respond to oil similarly.


Subject(s)
Killifishes , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Larva
14.
Sci Rep ; 10(1): 4851, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32161275

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Sci Rep ; 10(1): 1684, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32015368

ABSTRACT

The area and timing of the Deepwater Horizon oil spill highlight the need to study oil and hypoxia exposure in early life stage fishes. Though critical to health, little research has targeted the effect of oil and hypoxia exposure on developing immune systems. To this end, we exposed sheepshead minnows (Cyprinodon variegatus) at three early life stages: embryonic; post-hatch; and post-larval, to a high energy water accommodated fraction (HEWAF) of oil, hypoxia, or both for 48 hours. We performed RNAseq to understand how exposures alter expression of immune transcripts and pathways. Under control conditions, the embryonic to post-hatch comparison (first transition) had a greater number of significantly regulated immune pathways than the second transition (post-hatch to post-larval). The addition of oil had little effect in the first transition, however, hypoxia elicited changes in cellular and humoral immune responses. In the second transition, oil exposure significantly altered many immune pathways (43), and while hypoxia altered few pathways, it did induce a unique signature of generally suppressing immune pathways. These data suggest that timing of exposure to oil and/or hypoxia matters, and underscores the need to further investigate the impacts of multiple stressors on immune system development in early life stage fishes.

16.
Mar Environ Res ; 150: 104762, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31394415

ABSTRACT

The explosion of the Deepwater Horizon (DWH) oil exploration platform on April 20, 2010 began a catastrophic leak of approximately 640 million liters crude oil into the northern Gulf of Mexico (GOM), affecting more than 2100 km of coastline, including wetlands and estuaries that provide habitat and nursery for many aquatic species. Estuaries of the GOM are dynamic environments, with constant fluctuations in salinity and dissolved oxygen, including large hypoxic zones during summer months. Spawning fish in northern GOM estuaries following the DWH incident were at significant risk of oil exposure, and adverse environmental conditions at the time of exposure, such as hypoxia and low salinity, could have exacerbated developmental effects in the offspring. The present study investigated the effects of F0 parental oil exposure in different environmental scenarios on development of F1 sheepshead minnow (SHM) offspring. Adult SHM were exposed to the high-energy water accommodated fraction (HEWAF) of crude oil in three environmental scenarios: normoxic (NORM), hypoxic (HYP), and hypoxic with low salinity (HYP-LS). Parental HEWAF exposure in the NORM scenario resulted in developmental effects in F1 offspring, including altered heart rate, decreased length at hatch, and impaired prey capture. Co-exposure of F0 SHM to HEWAF and adverse environmental conditions altered HEWAF effects on F1 heart rate, hatch rate, prey capture, and survival. Time to hatch was not significantly impacted by parental HEWAF in any environmental scenario. The present study demonstrates that parental exposure to HEWAF results in developmental changes in F1 embryos, and co-exposure to adverse environmental conditions altered the effects for several developmental endpoints. These data suggest that SHM exposed to oil in estuaries experiencing hypoxia or low salinity may produce offspring with worsened outcomes. These developmental effects, in addition to previously reported reproductive effects in adult fish, could lead to long-term population level impacts for SHM.


Subject(s)
Killifishes , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Estuaries , Female , Gulf of Mexico , Killifishes/growth & development , Male , Maternal Exposure , Paternal Exposure , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
17.
Aquat Toxicol ; 214: 105234, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31357108

ABSTRACT

The 2010 Deepwater Horizon oil spill released approximately 780 million liters of crude oil contaminating coastal habitats from Texas to Florida which are important habitats for many fish species during early life stages. These diverse habitats are also prone to rapid fluctuations in water quality, such as dissolved oxygen concentration and salinity. The consequence of combined exposure to crude oil and suboptimal environmental conditions during early life stage development of fish is still largely unknown. The objective of this project was to investigate the impacts of exposure to crude oil in combination with varying environmental stressors on developing Cyprinodon variegatus survival, growth, and gene expression. Three life stages (embryonic, post-hatch, and post-larval) were exposed to four nominal concentrations (6.25%, 12.5%, 50% and 100% with actual polycyclic aromatic hydrocarbon (PAH) concentrations ranging from 0 to 512 µg/L) of high energy water accommodated fractions (HEWAF) under different oxic (2.0 or >5.0 mg/L) and salinity (10 or 30 ppt) regimes at 30 °C for 48 h. We found that the post-larval developmental stage was the most sensitive to oil toxicity. Median lethal concentrations during the post-larval exposures followed a treatment-dependent pattern with the highest mortality observed under hypoxic-high salinity conditions (64.55 µg/L). Real-time PCR analysis identified down regulation of target genes, encoding cytochrome P450-1α (cyp1a1), erythropoietin (epo), and the aryl hydrocarbon receptor nuclear translocator (arnt1) only when oil exposure occurred under hypoxic-high salinity conditions in treatments with PAH concentrations greater than 226 µg/L. The target genes measured in this experiment are involved in the aryl hydrocarbon receptor signaling pathway which modulates metabolism of PAHs (a major component of crude oil), and the hypoxia inducible 1-α signaling pathway which is responsible for resilience to hypoxic stress, and it is known that disruption of these pathways can lead to an array of acute and chronic effects. Our results indicated that sheepshead minnow are most sensitive to oil exposure during the post-larval developmental stage. Survival data from this age-stage also indicate that oil toxicity response is exacerbated in hypoxic and high salinity environments. The increased mortality observed during the post-larval developmental stage might be attributed to the suppression of the aryl hydrocarbon receptor signaling and the hypoxia inducible 1-α signaling pathways which is evident in by the down-regulated expression of cyp1a1, epo, and arnt1. These findings provide more information about interactions between oil and abiotic factors which enable us to make better assumptions of the ecological impacts of DWH on coastal estuaries.


Subject(s)
Gene Expression Regulation, Developmental , Hypoxia/pathology , Killifishes/growth & development , Killifishes/genetics , Petroleum Pollution , Salinity , Animals , Embryo, Nonmammalian/drug effects , Gene Expression Regulation, Developmental/drug effects , Killifishes/embryology , Larva/drug effects , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Survival Analysis , Water Pollutants, Chemical/toxicity
18.
Ecotoxicol Environ Saf ; 181: 106-113, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31176244

ABSTRACT

Oil spills have polluted the marine environment for decades and continue to be a major source of polycyclic aromatic hydrocarbons (PAHs) to marine ecosystems around the globe, for example during the 2010 Deepwater Horizon spill. Although the toxicity of PAHs to fish has been well studied, their effects combined with abiotic stressors are poorly understood. The goal of this study was to describe the combined impacts of crude oil and environmental stressors on fish larvae, a sensitive life stage. Gulf killifish (Fundulus grandis) larvae (<24 h post-hatch) were exposed for 48 h to high energy water accommodated fractions (HEWAF; total PAHs 0-125 ppb) of Macondo oil from the Deepwater Horizon spill under different combinations of environmental conditions (dissolved oxygen 2, 6 ppm; temperature 20, 25, 30 °C; salinity 3, 10, 30 ppt). Even under optimal environmental conditions (25 °C, 10 ppt, 6 ppm) larval survival and development were negatively affected by PAHs, starting with the lowest concentration tested (∼15 ppb). Hypoxia and high temperature each increased the adverse effects of HEWAF on development and mortality. In contrast, salinity had little effect on any of the endpoints measured. Importantly, expression of the detoxifying gene cyp1a was highly induced in PAH-exposed larvae under normoxic conditions, but not under hypoxic conditions, potentially explaining the enhanced toxicity observed under hypoxia. This work highlights the importance of considering how suboptimal environmental conditions can exacerbate the effects of pollution on fish early life stages.


Subject(s)
Fundulidae/growth & development , Petroleum Pollution , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Hypoxia/veterinary , Larva/drug effects , Petroleum Pollution/adverse effects , Polycyclic Aromatic Hydrocarbons/toxicity , Salinity , Temperature
19.
Aquat Toxicol ; 212: 175-185, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31129413

ABSTRACT

Estuaries of the northern Gulf of Mexico are dynamic environments, with fluctuations in salinity and dissolved oxygen, including areas of seasonal hypoxia. Fish that reside and reproduce in these estuaries, including sheepshead minnow (Cyprinodon variegatus; SHM), were at significant risk of oil exposure following the Deepwater Horizon oil spill. It is poorly understood how differences in environmental conditions during oil exposure impact its toxicity. The present study investigated the effects of crude oil high-energy water accommodated fraction (HEWAF) on SHM reproduction in three environmental scenarios (normoxic, hypoxic, and hypoxic with low salinity) to determine if differences in salinity (brackish vs low salinity) and dissolved oxygen (normoxia vs hypoxia) could exacerbate the effects of HEWAF-derived polycyclic aromatic hydrocarbons (PAHs). We observed that HEWAF exposure significantly increased liver somatic index of SHM compared to control, but this effect was not exacerbated by hypoxia or low salinity. HEWAF exposure also significantly decreased egg production and egg fertilization rate, but only in the hypoxic and hypoxic with low salinity scenarios. A significant correlation existed between body burdens of PAHs and reproductive endpoints, providing substantial evidence that oil exposure reduced reproductive capacity in SHM, across a range of environmental conditions. These data suggest that oil spill risk assessments that fail to consider other environmental stressors (i.e. hypoxia and salinity) may be underestimating risk.


Subject(s)
Hypoxia/pathology , Killifishes/physiology , Petroleum Pollution , Petroleum/toxicity , Reproduction/drug effects , Salinity , Animals , Gulf of Mexico , Liver/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity
20.
Environ Toxicol Chem ; 38(3): 638-649, 2019 03.
Article in English | MEDLINE | ID: mdl-30556163

ABSTRACT

The Deepwater Horizon oil spill resulted in the release of over 640 million L of crude oil into the Gulf of Mexico, affecting over 2000 km of shoreline, including estuaries that serve as important habitats and nurseries for aquatic species. Cyprinodon variegatus (sheepshead minnow) are small-bodied fish that inhabit northern Gulf of Mexico estuaries, are easily adaptable to laboratory conditions, and are commonly used in toxicological assessment studies. The purpose of the present study was to determine the somatic, reproductive, and developmental effects of an environmentally relevant polycyclic aromatic hydrocarbon (PAH) mixture, the oil high-energy water accommodated fraction (HEWAF), on experimentally exposed sheepshead minnow (F0 ) as well as 2 generations of offspring (F1 and F2 ) without additional exposure. The F0 generation exposed to HEWAF had increased liver somatic indices, altered egg production, and decreased fertilization. Several developmental endpoints in the F1 were altered by F0 HEWAF exposure. As adults, low HEWAF-exposed F1 females demonstrated decreased weight and length. Both the F1 and F2 generations derived from high HEWAF-exposed F0 had deficits in prey capture compared to control F1 and F2 , respectively. Correlations between endpoints and tissue PAHs provide evidence that the physiological effects observed were associated with hydrocarbon exposure. These data demonstrate that PAHs were capable of causing physiological changes in exposed adult sheepshead minnow and transgenerational effects in unexposed offspring, both of which could have population-level consequences. Environ Toxicol Chem 2019;38:638-649. © 2018 SETAC.


Subject(s)
Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Animals , Environmental Exposure , Female , Killifishes/anatomy & histology , Killifishes/growth & development , Killifishes/physiology , Liver/drug effects , Male , Petroleum/toxicity , Petroleum Pollution , Reproduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...