Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Tissue Eng Part A ; 29(17-18): 461-470, 2023 09.
Article in English | MEDLINE | ID: mdl-37114683

ABSTRACT

Although microsuture neurorrhaphy is the accepted clinical standard treatment for severed peripheral nerves, this technique requires microsurgical proficiency and still often fails to provide adequate nerve approximation for effective regeneration. Entubulation utilizing commercially available conduits may enhance the technical quality of the nerve coaptation and potentially provide a proregenerative microenvironment, but still requires precise suture placement. We developed a sutureless nerve coaptation device, Nerve Tape®, that utilizes Nitinol microhooks embedded within a porcine small intestinal submucosa backing. These tiny microhooks engage the outer epineurium of the nerve, while the backing wraps the coaptation to provide a stable, entubulated repair. In this study, we examine the impact of Nerve Tape on nerve tissue and axonal regeneration, compared with repairs performed with commercially available conduit-assisted or microsuture-only repairs. Eighteen male New Zealand white rabbits underwent a tibial nerve transection, immediately repaired with (1) Nerve Tape, (2) conduit plus anchoring sutures, or (3) four 9-0 nylon epineurial microsutures. At 16 weeks postinjury, the nerves were re-exposed to test sensory and motor nerve conduction, measure target muscle weight and girth, and perform nerve tissue histology. Nerve conduction velocities in the Nerve Tape group were significantly better than both the microsuture and conduit groups, while nerve compound action potential amplitudes in the Nerve Tape group were significantly better than the conduit group only. Gross morphology, muscle characteristics, and axon histomorphometry were not statistically different between the three repair groups. In the rabbit tibial nerve repair model, Nerve Tape offers similar regeneration efficacy compared with conduit-assisted and microsuture-only repairs, suggesting minimal impact of microhooks on nerve tissue.


Subject(s)
Nerve Tissue , Peripheral Nerves , Male , Animals , Rabbits , Swine , Peripheral Nerves/surgery , Axons , Prostheses and Implants , Nerve Regeneration/physiology , Sciatic Nerve/physiology
2.
Nat Commun ; 13(1): 7055, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36396644

ABSTRACT

Antigen recognition by the T cell receptor (TCR) of CD4+ T cells can be greatly enhanced by the coreceptor CD4. Yet, understanding of the molecular mechanism is hindered by the ultra-low affinity of CD4 binding to class-II peptide-major histocompatibility complexes (pMHC). Here we show, using two-dimensional (2D) mechanical-based assays, that the affinity of CD4-pMHC interaction is 3-4 logs lower than that of cognate TCR-pMHC interactions, and it is more susceptible to increased dissociation by forces (slip bond). In contrast, CD4 binds TCR-pre-bound pMHC at 3-6 logs higher affinity, forming TCR-pMHC-CD4 tri-molecular bonds that are prolonged by force (catch bond), and modulated by protein mobility on the cell membrane, indicating profound TCR-CD4 cooperativity. Consistent with a tri-crystal structure, using DNA origami as a molecular ruler to titrate spacing between TCR and CD4 we show that 7-nm proximity optimizes TCR-pMHC-CD4 tri-molecular bond formation with pMHC. Our results thus provide deep mechanistic insight into CD4 enhancement of TCR antigen recognition.


Subject(s)
Antigens , Receptors, Antigen, T-Cell , Receptors, Antigen, T-Cell/metabolism , Major Histocompatibility Complex , Histocompatibility Antigens , Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...