Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mult Scler ; 28(3): 369-382, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34124960

ABSTRACT

OBJECTIVES: To investigate the extent of synaptic loss, and the contribution of gray matter (GM) inflammation and demyelination to synaptic loss, in multiple sclerosis (MS) brain tissue. METHODS: This study was performed on two different post-mortem series of MS and control brains, including deep GM and cortical GM. MS brain samples had been specifically selected for the presence of active demyelinating GM lesions. Over 1,000,000 individual synapses were identified and counted using confocal microscopy, and further characterized as glutamatergic/GABAergic. Synaptic counts were also correlated with neuronal/axonal loss. RESULTS: Important synaptic loss was observed in active demyelinating GM lesions (-58.9%), while in chronic inactive GM lesions, synaptic density was only mildly reduced compared to adjacent non-lesional gray matter (NLGM) (-12.6%). Synaptic loss equally affected glutamatergic and GABAergic synapses. Diffuse synaptic loss was observed in MS NLGM compared to control GM (-21.2% overall). CONCLUSION: This study provides evidence, in MS brain tissue, of acute synaptic damage/loss during active GM inflammatory demyelination and of synaptic reorganization in chronically demyelinated GM, affecting equally glutamatergic and GABAergic synapses. Furthermore, this study provides a strong indication of widespread synaptic loss in MS NLGM also independently from focal GM demyelination.


Subject(s)
Multiple Sclerosis , White Matter , Brain/pathology , Gray Matter/pathology , Humans , Multiple Sclerosis/pathology , Neurons/pathology , Synapses/pathology , White Matter/pathology
2.
Int J Mol Sci ; 19(9)2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30213051

ABSTRACT

Neuron glial antigen 2 (NG2) is a chondroitin sulphate proteoglycan 4 (CSPG4) that occurs in developing and adult central nervous systems (CNSs) as a marker of oligodendrocyte precursor cells (OPCs) together with platelet-derived growth factor receptor α (PDGFRα). It behaves variably in different pathological conditions, and is possibly involved in the origin and progression of human gliomas. In the latter, NG2/CSPG4 induces cell proliferation and migration, is highly expressed in pericytes, and plays a role in neoangiogenesis. NG2/CSPG4 expression has been demonstrated in oligodendrogliomas, astrocytomas, and glioblastomas (GB), and it correlates with malignancy. In rat tumors transplacentally induced by N-ethyl-N-nitrosourea (ENU), NG2/CSPG4 expression correlates with PDGFRα, Olig2, Sox10, and Nkx2.2, and with new vessel formation. In this review, we attempt to summarize the normal and pathogenic functions of NG2/CSPG4, as well as its potential as a therapeutic target.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Glioblastoma/metabolism , Glioma/metabolism , Membrane Proteins/metabolism , Adult , Animals , Central Nervous System/metabolism , Central Nervous System/pathology , Glioblastoma/pathology , Glioma/pathology , Homeobox Protein Nkx-2.2 , Homeodomain Proteins , Humans , Nuclear Proteins , Rats , Transcription Factors
3.
PLoS One ; 13(5): e0198037, 2018.
Article in English | MEDLINE | ID: mdl-29795663

ABSTRACT

Monitoring of small ruminants for transmissible spongiform encephalopathies (TSEs) has recently become more relevant after two natural scrapie suspected cases of goats were found to be positive for classical BSE (C-BSE). C-BSE probably established itself in this species unrecognized, undermining disease control measures. This opens the possibility that TSEs in goats may remain an animal source for human prion diseases. Currently, there are no data regarding the natural presence of the atypical BSE in caprines. Here we report that C-BSE and L-type atypical BSE (L-BSE) isolates from bovine species are intracerebrally transmissible to goats, with a 100% attack rate and a significantly shorter incubation period and survival time after C-BSE than after L-BSE experimental infection, suggesting a lower species barrier for classical agentin goat. All animals showed nearly the same clinical features of disease characterized by skin lesions, including broken hair and alopecia, and abnormal mental status. Histology and immunohistochemistry showed several differences between C-BSE and L-BSE infection, allowing discrimination between the two different strains. The lymphoreticular involvement we observed in the C-BSE positive goats argues in favour of a peripheral distribution of PrPSc similar to classical scrapie. Western blot and other currently approved screening tests detected both strains in the goats and were able to classify negative control animals. These data demonstrate that active surveillance of small ruminants, as applied to fallen stock and/or healthy slaughter populations in European countries, is able to correctly identify and classify classical and L-BSE and ultimately protect public health.


Subject(s)
Brain/pathology , Encephalopathy, Bovine Spongiform/pathology , Goat Diseases/pathology , PrPSc Proteins/metabolism , Scrapie/pathology , Animals , Brain/metabolism , Cattle , Encephalopathy, Bovine Spongiform/metabolism , Encephalopathy, Bovine Spongiform/transmission , Goat Diseases/metabolism , Goat Diseases/transmission , Goats , Pathology, Clinical , Scrapie/metabolism , Scrapie/transmission
4.
Oncotarget ; 8(53): 91636-91653, 2017 Oct 31.
Article in English | MEDLINE | ID: mdl-29207673

ABSTRACT

Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.

5.
Onco Targets Ther ; 8: 451-60, 2015.
Article in English | MEDLINE | ID: mdl-25737639

ABSTRACT

The diagnosis of astroblastoma is based on a typical histological aspect with perivascular distribution of cells sending cytoplasmic extensions to the vessels and vascular hyalinization. These criteria are useful for standardizing the identification of the tumor, but, in spite of this, there are discrepancies in the literature concerning the age distribution and the benign or malignant nature of the tumor. Three cases are discussed in this study: Case 1 was a typical high-grade astroblastoma; Case 2 was an oligodendroglioma at the first intervention and an oligoastrocytoma at the second intervention with typical perivascular arrangements in the astrocytic component; Case 3 was a gemistocytic glioma with malignant features and typical perivascular arrangements. Genetic analysis showed genetic alterations that are typical of gliomas of all malignancy grades. Using the neurosphere assay, neurospheres and adherent cells were found to have developed in Case 1, while adherent cells only developed in Case 2, in line with the stemness potential of the tumors. The cases are discussed in relation to their diagnostic assessment as astroblastoma, and it is hypothesized that the typical perivascular distribution of cells may not indicate a separate and unique tumor entity, but may be a peculiarity that can be acquired by astrocytic gliomas when an unknown cause from the tumor microenvironment influences the relationship between vessels and tumor cells.

6.
Mult Scler ; 17(10): 1194-201, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21613335

ABSTRACT

BACKGROUND: Progranulin (PGRN) is a fundamental neurotrophic factor, and is also involved in inflammation and wound repair. PGRN may have pro- or anti-inflammatory properties, depending upon proteolysis of the anti-inflammatory parent PGRN protein and the generation of pro-inflammatory granulin peptides. OBJECTIVES: Our objectives were as follows: (1) to evaluate the presence and distribution of PGRN in multiple sclerosis (MS) brain tissue, correlating it with demyelination and inflammation; (2) to evaluate cerebrospinal fluid (CSF) PGRN concentrations in patients with MS and controls, in relationship to the clinical features of the disease. METHODS: Our study involved the following: (1) neuropathological study of PGRN on post-mortem tissue of 19 MS and six control brains; (2) evaluation of PGRN CSF concentration in 40 MS patients, 15 non-inflammatory controls and five inflammatory controls (viral encephalitis). RESULTS: In active demyelinating lesions, PGRN was expressed on macrophages/microglia. In the normal-appearing white matter (NAWM), expression of PGRN was observed on activated microglia. PGRN was expressed by neurons and microglia in cortical lesions and in normal-appearing cortex. No expression of PGRN was observed in controls, except on neurons. PGRN CSF concentrations were significantly higher in patients with relapsing-remitting MS during relapses and in progressive MS patients, compared with relapsing-remitting MS patients during remissions and with non-inflammatory controls. CONCLUSIONS: PGRN is strongly expressed in MS brains, by macrophages/microglia in active lesions, and by activated microglia in the NAWM; PGRN CSF concentrations in MS are correspondingly increased in conditions of enhanced macrophage/microglia activation, such as during relapses and in progressive MS.


Subject(s)
Brain/metabolism , Brain/pathology , Intercellular Signaling Peptides and Proteins/analysis , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Inflammation/metabolism , Inflammation/pathology , Macrophages/metabolism , Macrophages/pathology , Microglia/metabolism , Microglia/pathology , Progranulins
7.
Neurol Sci ; 32(1): 9-16, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20953810

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is generally considered to be a paradigm of pure motor neuron disorder; nevertheless, the possible occurrence of cognitive impairment up to a frank dementia in patients affected by ALS is recognized. The appraisal of the cognitive impairment in ALS patients is crucial not only to the therapeutic trials of this incurable disease, but also to the planning of care, compliance to interventions, the end-of-life decisions. The cognitive/behavioral changes of ALS patients are consistent with frontotemporal dysfunctions; the overlap of neuropathological features of ALS and frontotemporal lobe degeneration (FTLD) supports, in addition, the putative spectrum of ALS and FTD. In the present review, the pertinent clinical, genetic, neuropathological, neuropsychological and neuroimaging data of the literature are comprehensively and critically discussed. The distinct and overlapping features of ALS and FTD are pointed out, as well as the undisclosed questions deserving additional studies.


Subject(s)
Amyotrophic Lateral Sclerosis/complications , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Dementia/diagnosis , Dementia/etiology , Amyotrophic Lateral Sclerosis/genetics , Behavioral Symptoms/diagnosis , Behavioral Symptoms/etiology , Humans
8.
Acta Neuropathol ; 121(5): 611-22, 2011 May.
Article in English | MEDLINE | ID: mdl-21120508

ABSTRACT

TDP-43, encoded by TARDBP, is a ubiquitously expressed, primarily nuclear protein. In recent years, TDP-43 has been identified as the major pathological protein in ALS due to its mislocalisation in the cytoplasm of motor neurons of patients with and without TARDBP mutations and expression in forms that do not match its predicted molecular weight. In this study, the TDP-43 profile was investigated using western immunoblot analysis in whole lysates, nuclei and cytoplasm of circulating lymphomonocytes from 16 ALS patients, 4 with (ALS/TDP+) and 12 without (ALS/TDP-) TARDBP mutations in the protein C-terminal domain, and thirteen age-matched, healthy donors (controls). Three disease-unaffected first-degree relatives of an ALS/TDP+ patient were also included: one carried the parent mutation (Rel/TDP+) whereas the other two did not (Rel/TDP-). In all ALS patients, relatives and controls, TDP-43 retained the predicted molecular weight in whole cell lysates and nuclei, but in the cytoplasm its molecular weight was slightly smaller than expected. In quantitative terms, TDP-43 was expressed at approximately the same levels in whole cell lysates of ALS patients, relatives and controls. In contrast, TDP-43 accumulated in the cytoplasm with concomitant nuclear depletion in all ALS/TDP+ patients, in about 50% of ALS/TDP- patients and in the Rel/TDP+ subject compared to the controls. In the remaining ALS/TDP- patients and in the two Rel/TDP- subjects, TDP-43 matched the control levels in both subcellular compartments. Were these findings further confirmed, circulating lymphomonocytes could be informative of TDP-43 mislocalisation in nervous tissue and used as a biomarker for future disease risk.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Cytoplasm/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Lymphocyte Subsets/metabolism , Lymphocyte Subsets/pathology , Monocytes/metabolism , Monocytes/pathology , Adult , Aged , Amyotrophic Lateral Sclerosis/genetics , Cytoplasm/pathology , DNA-Binding Proteins/chemistry , Female , Humans , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Male , Middle Aged , Mutation/genetics
9.
Brain Pathol ; 20(4): 730-7, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19919605

ABSTRACT

Although a large number of amyotrophic lateral sclerosis (ALS) patients have undergone transplantation procedures with olfactory ensheathing cells (OECs) in the Bejing Hospital, to our knowledge, no post-mortem neuropathologic analyses have been performed. We examined the post-mortem brain of two Italian patients affected by ALS who underwent cellular transplantation in Beijing with their consent. Our aim was to assess the events following the graft procedure to possibly support the rationale of the treatment strategy. The neuropathologic findings were analyzed on the basis of the limited awareness of the experimental conditions and discussed in relation to the safety, efficacy and long-term outcome of the transplanted cells. Islands of quiescent, undifferentiated cells within the delivery track persisting for up to 12 months-24 months were found. Prominent glial and inflammatory reaction around the delivery track strongly supports the encasement of the graft. Evidence of axonal regeneration, neuronal differentiation and myelination was not seen. The surgical procedure of implantation was not compatible with a neurotrophic effect. The OEC transplantation did not modify the neuropathology of ALS in the two patients. In conclusion, the present neuropathologic analysis does not support a beneficial effect of fetal OEC implantation into the frontal lobes of ALS patients.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/surgery , Brain/pathology , Cell Transplantation/pathology , Neuroglia/transplantation , Olfactory Bulb/cytology , Cell Transplantation/methods , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroglia/pathology , Olfactory Bulb/transplantation , Treatment Outcome
10.
Brain Pathol ; 20(2): 431-40, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19725832

ABSTRACT

Previously, myelin from cerebral white matter (CWM) of two subjects of a family with orthochromatic adult-onset autosomal-dominant leukodystrophy (ADLD) was disclosed to exhibit defective large isoform of myelin-associated glycoprotein (L-MAG) and patchy distribution only in the elder subject. L-MAG and neural cell adhesion molecule (N-CAM) (N-CAM 180, 140, and 120) are structurally related and concur to myelin/axon interaction. In early developmental stages, in neurons and glia N-CAM is converted into polysialylated (PSA)-NCAM by two sialyltransferases sialyltransferase-X (STX) and polysialyltransferase-1 (PST). Notably, PSA-NCAM disrupts N-CAM adhesive properties and is nearly absent in the adult brain. Here, CWM extracts and myelin of the two subjects were searched for the expression pattern of the N-CAM isoforms and PSA-NCAM, and their CWM was evaluated for N-CAM, STX and PST gene copy number and gene expression as mRNA. Biochemically, we disclosed that in CWM extracts and myelin from both subjects, PSA-NCAM accumulates, N-CAM 180 considerably increases, N-CAM 140 is modestly modified and N-CAM 120 remarkably decreases; duplication of genes encoding N-CAM, STX and PST was not revealed, whereas PST mRNA was clearly increased. Immunohistochemically, in CWM of both subjects, we found an unusually diffuse accumulation of PSA-NCAM without inflammation markers. PSA-NCAM persistence, up-regulated PST mRNA and previously uncovered defective L-MAG may be early pathogenetic events in this ADLD form.


Subject(s)
Cerebrum/metabolism , Hereditary Central Nervous System Demyelinating Diseases/metabolism , Leukoencephalopathies/metabolism , Myelin-Associated Glycoprotein/metabolism , Neural Cell Adhesion Molecule L1/metabolism , Neural Cell Adhesion Molecules/metabolism , Sialic Acids/metabolism , Sialyltransferases/metabolism , Adult , Age of Onset , Blotting, Western , Family , Gene Dosage , Gene Expression Regulation , Hereditary Central Nervous System Demyelinating Diseases/genetics , Humans , Immunohistochemistry , Leukoencephalopathies/genetics , Middle Aged , Myelin Sheath/metabolism , Myelin-Associated Glycoprotein/genetics , Nerve Fibers, Myelinated/metabolism , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecules/genetics , Polymerase Chain Reaction , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Sialic Acids/genetics , Sialyltransferases/genetics
11.
Brain Pathol ; 20(2): 351-60, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19338576

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder consisting of progressive loss of motor neurons. TDP-43 has been identified as a component of ubiquitin-immunoreactive inclusions of motor neurons in ALS. We focused on the diffuse cytoplasmic TDP-43 immunoreactivity in ALS neurons, and quantitatively assessed it in comparison with skein/round TDP-43 and ubiquitin immunostaining in motor neurons of 30 sporadic ALS cases. The percentage of spinal motor neurons with cytoplasmic TDP-43 immunoreactivity was higher than that of ubiquitin-immunoreactive ones. The percentage of TDP-43-positive motor neurons was independent of neuron counts in anterior horns, while the percentage of ubiquitinated neurons was inversely correlated. Aiming to define the cytosolic localization of TDP-43, the immunoblot analysis of spinal cord and frontal cortex showed that full-length TDP-43, the 45 kDa form and ubiquitinated TDP-43 are found in the soluble inclusion-free fraction. The present data suggest that delocalization, accumulation and ubiquitination of TDP-43 in the cytoplasm of motor neurons are early dysfunctions in the cascade of the events leading to motor neuron degeneration in ALS, preceding the formation of insoluble inclusion bodies. Being cytoplasmic accumulation an ongoing event during the course of the illness, a therapeutic approach to this incurable disease can be envisaged.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Cytoplasm/metabolism , DNA-Binding Proteins/metabolism , Motor Neurons/metabolism , Spinal Cord/metabolism , Adult , Aged , Amyotrophic Lateral Sclerosis/pathology , Cell Count , Disease Progression , Female , Frontal Lobe/metabolism , Hippocampus/metabolism , Humans , Male , Middle Aged , Motor Neurons/pathology , Neurons/metabolism , Neurons/pathology , Spinal Cord/pathology , Temporal Lobe/metabolism , Time Factors , Ubiquitin/metabolism , Ubiquitination
12.
Dement Geriatr Cogn Disord ; 28(3): 239-43, 2009.
Article in English | MEDLINE | ID: mdl-19786775

ABSTRACT

BACKGROUND/AIM: Recent studies showed that TAR DNA-binding protein 43 (TDP-43), encoded by the TARDBP gene, is a major pathological protein in both sporadic and familial frontotemporal lobar degeneration (FTLD). The aim of this study was to search for mutations of the TARDBP gene in the disease. METHODS: We sequenced the TARDBP gene in 172 unrelated FTLD patients recruited from 2 Italian memory clinics. RESULTS: We identified 3 different variants of the TARDBP gene in 12 FTLD patients. Three patients showed a silent variant, Ala66Ala (c.332T --> C) in exon 2. A novel heterozygous mutation was found in intron 4 (c.543 + 51A --> G) in 1 patient, which is not located at the splicing site. Finally, a c.208C --> T variant in the 3' untranslated region was detected in 8 probands. None of the aforementioned variants were predicted to affect TDP-43. Hence, pathogenic mutations were not identified in any of the FTLD cases. CONCLUSION: Our study, in accord with previous studies in different populations, found no evidence for a major genetic role of the TARDBP gene in FTLD.


Subject(s)
DNA-Binding Proteins/genetics , Frontotemporal Lobar Degeneration/genetics , Aged , Cohort Studies , DNA/genetics , DNA Mutational Analysis , DNA Primers , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Exons/genetics , Female , Frontotemporal Lobar Degeneration/epidemiology , Humans , Italy/epidemiology , Male , Middle Aged , Mutation/physiology
13.
J Neurochem ; 109(1): 105-15, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19187445

ABSTRACT

Niemann-Pick disease (NPD) type A is a neurodegenerative disorder caused by sphingomyelin (SM) accumulation in lysosomes relying on reduced or absent acid sphingomyelinase (ASM) activity. NPD-A patients develop progressive neurodegeneration including cerebral and cerebellar atrophy, relevant Purkinje cell and myelin deficiency with death within 3 years. ASM'knock-out' (ASMKO) mice, an animal model of NPD-A, develop a phenotype largely mimicking that of NPD-A. The mechanisms underlying myelin formation are poorly documented in ASMKO mice. In this study we determined the content of four myelin-specific proteins, myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), myelin associated glycoprotein (MAG) and proteolipid protein (PLP), and that of myelin-enriched sphingolipids in the brains of ASMKO and wild-type mice in early stages of post-natal (pn) life. Protein and mRNA analysis revealed that in ASMKO mice beginning from 4 post-natal weeks (wk-pn), the expression levels of MAG, CNP, and MBP were below those observed in wild-type mice and the same applied to PLP at 10 wk-pn. Moreover, at 4 wk-pn the expression of SOX10, one of the transcription factors involved in oligodendrocyte development and maintenance was lower in ASMKO mice. Lipid analysis showed that SM and the gangliosides GM3 and GM2 accumulated in the brains of ASMKO mice, as opposed to galactocerebroside and galactosulfocerebroside that, in parallel with the mRNAs of UDP-galactose ceramide galactosyltransferase and galactose-3-O-sulfotransferase 1, the two transferases involved in their synthesis, decreased. Myelin lipid analysis showed a progressive sphingomyelin accumulation in ASMKO mice; noteworthy, of the two sphingomyelin species known to be resolved by TLC, only that with the lower Rf accumulated. The immunohistochemical analysis showed that the reduced expression of myelin specific proteins in ASMKO mice at 10 wk-pn was not restricted to the Purkinje layer of the cerebellar cortex but involved the cerebral cortex as well. In conclusion, reduced oligodendrocyte metabolic activity is likely to be the chief cause of myelin deficiency in ASMKO mice, thus shedding light on the molecular dysfunctions underlying neurodegeneration in NPD-A.


Subject(s)
Brain/metabolism , Myelin Proteins/metabolism , Niemann-Pick Disease, Type A/metabolism , SOXE Transcription Factors/deficiency , Sphingolipids/metabolism , Sphingomyelin Phosphodiesterase/deficiency , Animals , Brain/enzymology , Disease Models, Animal , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Myelin Proteins/genetics , Niemann-Pick Disease, Type A/genetics , SOXE Transcription Factors/biosynthesis , SOXE Transcription Factors/genetics , Sphingolipids/genetics , Sphingomyelin Phosphodiesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...