Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Psychiatry ; 26(5): 1619-1633, 2021 05.
Article in English | MEDLINE | ID: mdl-31664177

ABSTRACT

With Alzheimer's disease (AD) exhibiting reduced ability of neural stem cell renewal, we hypothesized that de novo mutations controlling embryonic development, in the form of brain somatic mutations instigate the disease. A leading gene presenting heterozygous dominant de novo autism-intellectual disabilities (ID) causing mutations is activity-dependent neuroprotective protein (ADNP), with intact ADNP protecting against AD-tauopathy. We discovered a genomic autism ADNP mutation (c.2188C>T) in postmortem AD olfactory bulbs and hippocampi. RNA-Seq of olfactory bulbs also identified a novel ADNP hotspot mutation, c.2187_2188insA. Altogether, 665 mutations in 596 genes with 441 mutations in AD patients (389 genes, 38% AD-exclusive mutations) and 104 genes presenting disease-causing mutations (OMIM) were discovered. OMIM AD mutated genes converged on cytoskeletal mechanisms, autism and ID causing mutations (about 40% each). The number and average frequencies of AD-related mutations per subject were higher in AD subjects compared to controls. RNA-seq datamining (hippocampus, dorsolateral prefrontal cortex, fusiform gyrus and superior frontal gyrus-583 subjects) yielded similar results. Overlapping all tested brain areas identified unique and shared mutations, with ADNP singled out as a gene associated with autism/ID/AD and presenting several unique aging/AD mutations. The large fusiform gyrus library (117 subjects) with high sequencing coverage correlated the c.2187_2188insA ADNP mutation frequency to Braak stage (tauopathy) and showed more ADNP mutations in AD specimens. In cell cultures, the ADNP-derived snippet NAP inhibited mutated-ADNP-microtubule (MT) toxicity and enhanced Tau-MT association. We propose a paradigm-shifting concept in the perception of AD whereby accumulating mosaic somatic mutations promote brain pathology.


Subject(s)
Alzheimer Disease , Autistic Disorder , Homeodomain Proteins/genetics , Intellectual Disability , Nerve Tissue Proteins/genetics , Alzheimer Disease/genetics , Autistic Disorder/genetics , Brain/metabolism , Humans , Mutation
2.
Transl Psychiatry ; 10(1): 228, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661233

ABSTRACT

Given our recent discovery of somatic mutations in autism spectrum disorder (ASD)/intellectual disability (ID) genes in postmortem aged Alzheimer's disease brains correlating with increasing tauopathy, it is important to decipher if tauopathy is underlying brain imaging results of atrophy in ASD/ID children. We concentrated on activity-dependent neuroprotective protein (ADNP), a prevalent autism gene. The unique availability of multiple postmortem brain sections of a 7-year-old male, heterozygous for ADNP de novo mutation c.2244Adup/p.His559Glnfs*3 allowed exploration of tauopathy, reflecting on a general unexplored mechanism. The tested subject exhibited autism, fine motor delays, severe intellectual disability and seizures. The patient died after multiple organ failure following liver transplantation. To compare to other ADNP syndrome mutations, immortalized lymphoblastoid cell lines from three different patients (including ADNP p.Arg216*, p.Lys408Valfs*31, and p.Tyr719* heterozygous dominant mutations) and a control were subjected to RNA-seq. Immunohistochemistry, high-throughput gene expression profiles in numerous postmortem tissues followed. Comparisons to a control brain and to extensive datasets were used. Live cell imaging investigated Tau-microtubule interaction, protecting against tauopathy. Extensive child brain tauopathy paralleled by multiple gene expression changes was discovered. Tauopathy was explained by direct mutation effects on Tau-microtubule interaction and correction by the ADNP active snippet NAP. Significant pathway changes (empirical P value < 0.05) included over 100 genes encompassing neuroactive ligand-receptor and cytokine-cytokine receptor interaction, MAPK and calcium signaling, axon guidance and Wnt signaling pathways. Changes were also seen in steroid biosynthesis genes, suggesting sex differences. Selecting the most affected genes by the ADNP mutations for gene expression analysis, in multiple postmortem tissues, identified Tau (MAPT)-gene-related expression changes compared with extensive normal gene expression (RNA-seq) databases. ADNP showed relatively reduced expression in the ADNP syndrome cerebellum, which was also observed for 25 additional genes (representing >50% of the tested genes), including NLGN1, NLGN2, PAX6, SMARCA4, and SNAP25, converging on nervous system development and tauopathy. NAP provided protection against mutated ADNP disrupted Tau-microtubule association. In conclusion, tauopathy may explain brain-imaging findings in ADNP syndrome children and may provide a new direction for the development of tauopathy protecting drug candidates like NAP in ASD/ID.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Tauopathies , Aged , Autism Spectrum Disorder/genetics , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Child , DNA Helicases , Female , Homeodomain Proteins/metabolism , Humans , Male , Nerve Tissue Proteins , Nuclear Proteins , Tauopathies/genetics , Transcription Factors
3.
J Clin Invest ; 128(11): 4956-4969, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30106381

ABSTRACT

Previous findings showed that in mice, complete knockout of activity-dependent neuroprotective protein (ADNP) abolishes brain formation, while haploinsufficiency (Adnp+/-) causes cognitive impairments. We hypothesized that mutations in ADNP lead to a developmental/autistic syndrome in children. Indeed, recent phenotypic characterization of children harboring ADNP mutations (ADNP syndrome children) revealed global developmental delays and intellectual disabilities, including speech and motor dysfunctions. Mechanistically, ADNP includes a SIP motif embedded in the ADNP-derived snippet drug candidate NAP (NAPVSIPQ, also known as CP201), which binds to microtubule end-binding protein 3, essential for dendritic spine formation. Here, we established a unique neuronal membrane-tagged, GFP-expressing Adnp+/- mouse line allowing in vivo synaptic pathology quantification. We discovered that Adnp deficiency reduced dendritic spine density and altered synaptic gene expression, both of which were partly ameliorated by NAP treatment. Adnp+/-mice further exhibited global developmental delays, vocalization impediments, gait and motor dysfunctions, and social and object memory impairments, all of which were partially reversed by daily NAP administration (systemic/nasal). In conclusion, we have connected ADNP-related synaptic pathology to developmental and behavioral outcomes, establishing NAP in vivo target engagement and identifying potential biomarkers. Together, these studies pave a path toward the clinical development of NAP (CP201) for the treatment of ADNP syndrome.


Subject(s)
Autistic Disorder/metabolism , Dendritic Spines/metabolism , Models, Neurological , Nerve Tissue Proteins/deficiency , Synapses/metabolism , Amino Acid Motifs , Animals , Autistic Disorder/genetics , Autistic Disorder/pathology , Autistic Disorder/physiopathology , Behavior, Animal , Biomarkers/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/pathology , Dendritic Spines/pathology , Gene Expression Regulation , Homeodomain Proteins , Humans , Mice , Mice, Knockout , Microtubules/genetics , Microtubules/metabolism , Microtubules/pathology , Mutation , Naphthoquinones/pharmacology , Synapses/pathology , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...