Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 226, 2019.
Article in English | MEDLINE | ID: mdl-30967754

ABSTRACT

Low noise platinum black or sputtered titanium nitride (TiN) microelectrodes are typically used for recording electrical activity of neuronal or cardiac cell cultures. Opaque electrodes and tracks, however, hinder the visibility of the cells when imaged with inverted microscope, which is the standard method of imaging cells plated on microelectrode array (MEA). Even though transparent indium tin oxide (ITO) electrodes exist, they cannot compete in impedance and noise performance with above-mentioned opaque counterparts. In this work, we propose atomic layer deposition (ALD) as the method to deposit TiN electrodes and tracks which are thin enough (25-65 nm) to be transparent (transmission ∼18-45%), but still benefit from the columnar structure of TiN, which is the key element to decrease noise and impedance of the electrodes. For ALD TiN electrodes (diameter 30 µm) impedances from 510 to 590 kΩ were measured at 1 kHz, which is less than the impedance of bare ITO electrodes. Human induced pluripotent stem cell (hiPSC)-derived cortical neurons were cultured on the ALD TiN MEAs for 14 days without observing any biocompatibility issues, and spontaneous electrical activity of the neurons was recorded successfully. The results show that transparent ALD TiN film is a suitable electrode material for producing functional MEAs.

2.
Nanotechnology ; 24(17): 175304, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23571491

ABSTRACT

A novel aluminum oxide (Al2O3) hard mask fabrication process with nanoscale resolution is introduced. The Al2O3 mask can be used for various purposes, but in this work it was utilized for silicon patterning using cryogenic deep reactive ion etching (DRIE). The patterning of Al2O3 is a two-step process utilizing focused ion beam (FIB) irradiation combined with wet chemical etching. Gallium (Ga(+)) FIB maskless patterning confers wet etch selectivity between the irradiated region and the non-irradiated one on the Al2O3 layer, and mask patterns can easily be revealed by wet etching. This method is a modification of Ga(+) FIB mask patterning for the silicon etch stop, which eliminates the detrimental lattice damage and doping of the silicon substrate in critical devices. The shallow surface gallium FIB irradiated Al2O3 mask protects the underlying silicon from Ga(+) ions. The performance of the masking capacity was tested by drawing pairs consisting of a line and an empty space with varying width. The best result was seven such pairs for 1 µm. The smallest half pitch was 59 nm. This method is capable of arbitrary pattern generation. The fabrication of a freestanding single-ended tuning fork resonator utilizing the introduced masking method is demonstrated.

3.
Nanotechnology ; 22(26): 265715, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21586812

ABSTRACT

The performance of field-effect transistors based on single-walled carbon nanotube (SWCNT) networks depends on the electrical percolation of semiconducting and metallic nanotube pathways within the network. We present voltage-contrast scanning electron microscopy (VC-SEM) as a new tool for imaging percolation in a SWCNT network with nano-scale resolution. Under external bias, the secondary-electron contrast of SWCNTs depends on their conductivity, and therefore it is possible to image the preferred conduction pathways within a network by following the contrast evolution under bias in a scanning electron microscope. The experimental VC-SEM results are correlated to percolation models of SWCNT-bundle networks.

4.
Nanotechnology ; 22(6): 065303, 2011 Feb 11.
Article in English | MEDLINE | ID: mdl-21212490

ABSTRACT

A novel non-lithographic technique for the fabrication of carbon nanotube thin film transistors is presented. The whole transistor fabrication process requires only one mask which is used both to pattern transistor channels based on aerosol synthesized carbon nanotubes and to deposit electrodes by metal evaporation at different angles. An important effect of electrodynamic focusing was utilized for the directed assembly of transistor channels with feature sizes smaller than the mask openings. This dry non-lithographic method opens up new avenues for device fabrication especially for low cost flexible and transparent electronics.

5.
J Nanosci Nanotechnol ; 11(10): 8818-25, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22400265

ABSTRACT

Ultra-thin (2-5 nm thick) aluminum oxide layers were grown on non-functionalized individual single walled carbon nanotubes (SWCNT) and their bundles by atomic layer deposition (ALD) technique in order to investigate the mechanism of the coating process. Transmission electron microscopy (TEM) was used to examine the uniformity and conformality of the coatings grown at different temperatures (80 degrees C or 220 degrees C) and with different precursors for oxidation (water and ozone). We found that bundles of SWCNTs were coated continuously, but at the same time, bare individual nanotubes remained uncoated. The successful coating of bundles was explained by the formation of interstitial pores between the individual SWCNTs constituting the bundle, where the precursor molecules can adhere, initiating the layer growth. Thicker alumina layers (20-35 nm thick) were used for the coating of bottom-gated SWCNT-network based field effect transistors (FETs). ALD layers, grown at different conditions, were found to influence the performance of the SWCNT-network FETs: low temperature ALD layers caused the ambipolarity of the channel and pronounced n-type conduction, whereas high temperature ALD processes resulted in hysteresis suppression in the transfer characteristics of the SWCNT transistors and preserved p-type conduction. Fixed charges in the ALD layer have been considered as the main factor influencing the conduction change of the SWCNT network based transistors.

6.
Article in English | MEDLINE | ID: mdl-22274949

ABSTRACT

Using a simple ion source set-up, laser desorption/ionization on silicon (DIOS) was demonstrated with the use of a custom-made drift tube ion mobility spectrometer (IMS), mounted on a commercial triple quadrupole mass spectrometer, and with an IMS equipped with a Faraday plate detector. DIOS was tested by mobility measurement of tetrapropylammonium iodide, tetrabutylammonium iodide and tetrapentylammonium iodide, whilst 2,6-di-tert- butylpyridine was used as a standard. The reduced mobilities measured for the test halides are in concordance with previously obtained ion mobility spectrometry-mass spectrometry data.

7.
Nanotechnology ; 20(8): 085201, 2009 Feb 25.
Article in English | MEDLINE | ID: mdl-19417441

ABSTRACT

We demonstrate a fabrication method for high-performance field-effect transistors (FETs) based on dry-processed random single-walled carbon nanotube networks (CNTNs) deposited at room temperature. This method is an advantageous alternative to solution-processed and direct CVD grown CNTN FETs, which allows using various substrate materials, including heat-intolerant plastic substrates, and enables an efficient, density-controlled, scalable deposition of as-produced single-walled CNTNs on the substrate directly from the aerosol (floating catalyst) synthesis reactor. Two types of thin film transistor (TFT) structures were fabricated to evaluate the FET performance of dry-processed CNTNs: bottom-gate transistors on Si/SiO2 substrates and top-gate transistors on polymer substrates. Devices exhibited on/off ratios up to 10(5) and field-effect mobilities up to 4 cm(2) V(-1) s(-1). The suppression of hysteresis in the bottom-gate device transfer characteristics by means of thermal treatment in vacuum and passivation by an atomic layer deposited Al(2)O(3) film was investigated. A 32 nm thick Al(2)O(3) layer was found to be able to eliminate the hysteresis.


Subject(s)
Aerosols/chemistry , Nanotechnology/instrumentation , Nanotubes, Carbon/chemistry , Transistors, Electronic , Equipment Design , Equipment Failure Analysis , Nanotubes, Carbon/ultrastructure
8.
J Mass Spectrom ; 40(4): 539-45, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15712357

ABSTRACT

The suitability of atmospheric pressure desorption/ionization on silicon mass spectrometry (AP-DIOS-MS) and matrix-assisted laser desorption ionization mass spectrometry (AP-MALDI-MS) for the identification of amphetamines and fentanyls in forensic samples was studied. With both ionization techniques, the mass spectra recorded showed abundant protonated molecules, and the background did not disturb the analysis. The use of tandem mass spectrometry (MS/MS) allowed unambiguous identification of the amphetamines and fentanyls. AP-DIOS-MS/MS and AP-MALDI-MS/MS were also successfully applied to the identification of authentic compounds from drug seizures. Common diluents and tablet materials did not disturb the analysis and compounds were unequivocally identified. The limits of detection (LODs) for amphetamines and fentanyls with AP-DIOS-MS/MS were 1-3 pmol, indicating excellent sensitivity of the method. The LODs with AP-MALDI-MS/MS were about 5-10 times higher.


Subject(s)
Amphetamines/analysis , Atmospheric Pressure , Fentanyl/analysis , Forensic Sciences/methods , Silicon/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amphetamines/chemistry , Fentanyl/chemistry , Mass Spectrometry , Molecular Structure , Powders/chemistry , Sensitivity and Specificity , Tablets/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...