Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(17): 17608-17622, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31025279

ABSTRACT

Vehicular evaporative emissions have been recognized as an important source of volatile organic compounds to the environment and are of high environmental concern since these compounds have been associated to the formation of surface ozone and secondary organic aerosols. Evaporative emissions occur during any vehicle operation. In Europe, a revised legislative test procedure has been recently introduced to better control evaporative emissions during parking. However, emissions related to normal driving conditions-the so-called running losses-have received less attention compared with the other categories. The current study aims at giving some insights to the prevailing temperature conditions in fuel tanks of typical European vehicles during normal driving operation. The effects of ambient air temperature, trip duration, vehicle speed, and fuel tank level on the temperature reached by the fuel inside the tank under different real-world operating conditions were studied. Tank temperature can exceed 40 °C depending on ambient and driving conditions. Ambient temperature was found to be the most important parameter affecting the tank temperature. Trip duration and driving pattern may also have an influence on the tank temperature particularly when long trips combined with high vehicle speed are examined. Additionally, the difference between tank and ambient temperature was examined during the individual trips and was found to vary between 1 and 10 °C depending on the testing conditions. The most important parameters affecting the delta temperature were found to be the trip duration and the maximum vehicle speed. Finally, the purging strategy of two of the test vehicles was monitored, and the parameters affecting the purging flow rate were investigated. No strong correlation between the canister flow rate with ambient temperature, vehicle speed, or fuel level was observed in either of the tested vehicles. Substantially different canister flow rate levels between the two vehicles point to different purging strategies.


Subject(s)
Automobiles , Temperature , Vehicle Emissions/analysis , Aerosols , Air Pollutants/analysis , Automobile Driving , Europe , Gasoline/analysis , Motor Vehicles , Ozone , Volatile Organic Compounds/analysis
2.
Environ Sci Pollut Res Int ; 25(13): 12206-12221, 2018 May.
Article in English | MEDLINE | ID: mdl-28707246

ABSTRACT

The Western Macedonian Lignite Center (WMLC) in northwestern Greece is the major lignite center in the Balkans feeding four major power plants of total power exceeding 4 GW. Concentrations of PM10 (i.e., particulate matters with diameters ≤10 µm) are the main concern in the region, and the high levels observed are often attributed to the activities related to power generation. In this study, the contribution of fugitive dust emissions from the opencast lignite mines to the ambient levels of PM10 in the surroundings was estimated by performing chemical mass balance (CMB) receptor modeling. For this purpose, PM10 samples were concurrently collected at four receptor sites located in the periphery of the mine area during the cold and the warm periods of the year (November-December 2011 and August-September 2012), and analyzed for a total of 26 macro- and trace elements and ionic species (sulfate, nitrate, chloride). The robotic chemical mass balance (RCMB) model was employed for source identification/apportionment of PM10 at each receptor site using as inputs the ambient concentrations and the chemical profiles of various sources including the major mine operations, the fly ash escaping the electrostatic filters of the power plants, and other primary and secondary sources. Mean measured PM10 concentrations at the different sites ranged from 38 to 72 µg m-3. The estimated total contribution of mines ranged between 9 and 22% in the cold period increasing to 36-42% in the dry warm period. Other significant sources were vehicular traffic, biomass burning, and secondary sulfate and nitrate aerosol. These results imply that more efficient measures to prevent and suppress fugitive dust emissions from the mines are needed.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Industrial Waste/analysis , Mining , Particulate Matter/analysis , Coal , Coal Ash/analysis , Dust/analysis , Greece , Models, Chemical , Power Plants
3.
Environ Sci Pollut Res Int ; 22(4): 2491-504, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25318420

ABSTRACT

Traffic-related sources have been recognized as a significant contributor of particulate matter particularly within major cities. Exhaust and non-exhaust traffic-related sources are estimated to contribute almost equally to traffic-related PM10 emissions. Non-exhaust particles can be generated either from non-exhaust sources such as brake, tyre, clutch and road surface wear or already exist in the form of deposited material at the roadside and become resuspended due to traffic-induced turbulence. Among non-exhaust sources, brake wear can be a significant particulate matter (PM) contributor, particularly within areas with high traffic density and braking frequency. Studies mention that in urban environments, brake wear can contribute up to 55 % by mass to total non-exhaust traffic-related PM10 emissions and up to 21 % by mass to total traffic-related PM10 emissions, while in freeways, this contribution is lower due to lower braking frequency. As exhaust emissions control become stricter, relative contributions of non-exhaust sources-and therefore brake wear-to traffic-related emissions will become more significant and will raise discussions on possible regulatory needs. The aim of the present literature review study is to present the state-of-the-art of the different aspects regarding PM resulting from brake wear and provide all the necessary information in terms of importance, physicochemical characteristics, emission factors and possible health effects.


Subject(s)
Air Pollution , Particulate Matter/analysis , Vehicle Emissions/analysis , Animals , Cities , Environmental Monitoring/methods , Humans , Particle Size , Particulate Matter/chemistry
4.
Environ Sci Pollut Res Int ; 21(17): 10205-14, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24756681

ABSTRACT

Mercury (Hg) is a toxic element that is emitted to the atmosphere through human activities, mainly fossil fuel combustion. Hg accumulations in soil are associated with atmospheric deposition, while coal-burning power plants remain the most important source of anthropogenic mercury emissions. In this study, we analyzed the Hg concentration in the topsoil of the Kozani-Ptolemais basin where four coal-fired power plants (4,065 MW) run to provide 50 % of electricity in Greece. The study aimed to investigate the extent of soil contamination by Hg using geostatistical techniques to evaluate the presumed Hg enrichment around the four power plants. Hg variability in agricultural soils was evaluated using 276 soil samples from 92 locations covering an area of 1,000 km(2). We were surprised to find a low Hg content in soil (range 1-59 µg kg(-1)) and 50 % of samples with a concentration lower than 6 µg kg(-1). The influence of mercury emissions from the four coal-fired power plants on soil was poor or virtually nil. We associate this effect with low Hg contents in the coal (1.5-24.5 µg kg(-1)) used in the combustion of these power plants (one of the most Hg-poor in the world). Despite anthropic activity in the area, we conclude that Hg content in the agricultural soils of the Kozani-Ptolemais basin is present in low concentrations.


Subject(s)
Air Pollutants/analysis , Mercury/analysis , Power Plants , Agriculture , Atmosphere , Coal/analysis , Environmental Monitoring , Fossil Fuels , Greece , Soil/chemistry
5.
Environ Sci Pollut Res Int ; 21(12): 7708-22, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24627204

ABSTRACT

Concentrations and chemical composition of the coarse particle fraction (PMc) were investigated at two urban sites in the city of Thessaloniki, Greece, through concurrent sampling of PM10 and PM2.5 during the warm and the cold months of the year. PMc levels at the urban-traffic site (UT) were among the highest found in literature worldwide exhibiting higher values in the cold period. PMc levels at the urban-background site (UB) were significantly lower exhibiting a reverse seasonal trend. Concentration levels of minerals and most trace metals were also higher at the UT site suggesting a stronger impact from traffic-related sources (road dust resuspension, brake and tire abrasion, road wear). According to the chemical mass closure obtained, minerals (oxides of Si, Al, Ca, Mg, Fe, Ti, and K) dominated the PMc profile, regardless of the site and the period, with organic matter and secondary inorganic aerosols (mainly nitrate) also contributing considerably to the PMc mass, particularly in the warm period. The influence of wind speed to dilution and/or resuspension of coarse particles was investigated. The source of origin of coarse particles was also investigated using surface wind data and atmospheric back-trajectory modeling. Finally, the contribution of resuspension to PMc levels was estimated for air quality management perspectives.


Subject(s)
Air Pollutants/chemistry , Particulate Matter/chemistry , Vehicle Emissions/analysis , Aerosols/analysis , Aerosols/chemistry , Air Pollutants/analysis , Cities , Dust/analysis , Environmental Monitoring/methods , Greece , Nitrates/analysis , Nitrates/chemistry , Nitrogen Oxides/analysis , Nitrogen Oxides/chemistry , Particle Size , Particulate Matter/analysis , Trace Elements/analysis , Trace Elements/chemistry , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...