Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Cell Biol Int ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023281

ABSTRACT

Pulmonary fibrosis, a debilitating lung disorder characterised by excessive fibrous tissue accumulation in lung parenchyma, compromises respiratory function leading to a life-threatening respiratory failure. While its origins are multifaceted and poorly understood, the urokinase system, including urokinase-type plasminogen activator (uPA) and its receptor (uPAR), plays a significant role in regulating fibrotic response, extracellular matrix remodelling, and tissue repair. Mesenchymal stem/stromal cells (MSCs) hold promise in regenerative medicine for treating pulmonary fibrosis. Our study aimed to investigate the potential of MSCs to inhibit pulmonary fibrosis as well as the contribution of uPAR expression to this effect. We found that intravenous MSC administration significantly reduced lung fibrosis in the bleomycin-induced pulmonary fibrosis model in mice as revealed by MRI and histological evaluations. Notably, administering the MSCs isolated from adipose tissue of uPAR knockout mice (Plaur-/- MSCs) attenuated lung fibrosis to a lesser extent as compared to WT MSCs. Collagen deposition, a hallmark of fibrosis, was markedly reduced in lungs treated with WT MSCs versus Plaur-/- MSCs. Along with that, endogenous uPA levels were affected differently; after Plaur-/- MSCs were administered, the uPA content was specifically decreased within the blood vessels. Our findings support the potential of MSC treatment in attenuating pulmonary fibrosis. We provide evidence that the observed anti-fibrotic effect depends on uPAR expression in MSCs, suggesting that uPAR might counteract the uPA accumulation in lungs.

2.
Biochemistry (Mosc) ; 89(2): 299-312, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38622097

ABSTRACT

A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.


Subject(s)
Hexokinase , Mitochondria , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Reactive Oxygen Species/metabolism , Hexokinase/metabolism , Muscle, Skeletal/metabolism , Aging/physiology , Mitochondria, Muscle/metabolism
3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397098

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) integrate hormone and neuromediator signaling to coordinate tissue homeostasis, tissue renewal and regeneration. To facilitate the investigation of MSC biology, stable immortalized cell lines are created (e.g., commercially available ASC52telo). However, the ASC52telo cell line has an impaired adipogenic ability and a depressed response to hormones, including 5-HT, GABA, glutamate, noradrenaline, PTH and insulin compared to primary cells. This markedly reduces the potential of the ASC52telo cell line in studying the mechanisms of hormonal control of MSC's physiology. Here, we have established a novel immortalized culture of adipose tissue-derived MSCs via forced telomerase expression after lentiviral transduction. These immortalized cell cultures demonstrate high proliferative potential (up to 40 passages), delayed senescence, as well as preserved primary culture-like functional activity (sensitivity to hormones, ability to hormonal sensitization and differentiation) and immunophenotype up to 17-26 passages. Meanwhile, primary adipose tissue-derived MSCs usually irreversibly lose their properties by 8-10 passages. Observed characteristics of reported immortalized human MSC cultures make them a feasible model for studying molecular mechanisms, which regulate the functional activities of these cells, especially when primary cultures or commercially available cell lines are not appropriate.


Subject(s)
Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/metabolism , Cell Line , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Hormones/metabolism , Cell Proliferation
4.
Aging Cell ; 23(4): e14098, 2024 04.
Article in English | MEDLINE | ID: mdl-38379415

ABSTRACT

Evaluation of the influence of primary and secondary aging on the manifestation of molecular and cellular hallmarks of aging is a challenging and currently unresolved issue. Our study represents the first demonstration of the distinct role of primary aging and chronic inflammation/physical inactivity - the most important drivers of secondary aging, in the regulation of transcriptomic and proteomic profiles in human skeletal muscle. To achieve this purpose, young healthy people (n = 15), young (n = 8) and older (n = 37) patients with knee/hip osteoarthritis, a model to study the effect of long-term inactivity and chronic inflammation on the vastus lateralis muscle, were included in the study. It was revealed that widespread and substantial age-related changes in gene expression in older patients relative to young healthy people (~4000 genes regulating mitochondrial function, proteostasis, cell membrane, secretory and immune response) were related to the long-term physical inactivity and chronic inflammation rather than primary aging. Primary aging contributed mainly to the regulation of genes (~200) encoding nuclear proteins (regulators of DNA repair, RNA processing, and transcription), mitochondrial proteins (genes encoding respiratory enzymes, mitochondrial complex assembly factors, regulators of cristae formation and mitochondrial reactive oxygen species production), as well as regulators of proteostasis. It was found that proteins associated with aging were regulated mainly at the post-transcriptional level. The set of putative primary aging genes and their potential transcriptional regulators can be used as a resource for further targeted studies investigating the role of individual genes and related transcription factors in the emergence of a senescent cell phenotype.


Subject(s)
Proteome , Transcriptome , Humans , Aged , Proteome/genetics , Proteome/metabolism , Transcriptome/genetics , Sedentary Behavior , Proteomics , Muscle, Skeletal/metabolism , Inflammation/genetics , Inflammation/metabolism
5.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119651, 2024 02.
Article in English | MEDLINE | ID: mdl-38086448

ABSTRACT

Hypertension is one of the major life-threatening complications of obesity. Recently adipose multipotent mesenchymal stromal cells (MSCs) were implicated to the pathogenesis of obesity-associated hypertension. These cells amplify noradrenaline-induced vascular cell contraction via cAMP-mediated signaling pathway. In this study we tested the ability of several cAMP-mediated hormones to affect the adrenergic sensitivity of MSCs and their associated contractility. Despite that adipose MSCs express a plethora of receptors capable of cAMP signaling activation, only 5-HT was able to elevate α1A-adrenoceptor-induced Ca2+ signaling in MSCs. Furthermore, 5-HT markedly enhanced noradrenaline-induced MSCs contractility. Using HTR isoform-specific antagonists followed by CRISPRi-mediated knockdown, we identified that the observed 5-HT effect on MSCs was mediated by the HTR6 isoform. This receptor was previously associated exclusively with 5-HT central nervous system activity. Discovered effect of HTR6 on MSCs contractility points to it as a potential therapeutic target for the prevention and treatment of obesity-associated hypertension.


Subject(s)
Hypertension , Serotonin , Humans , Norepinephrine/pharmacology , Hypertension/etiology , Obesity/complications , Protein Isoforms
6.
Int J Mol Sci ; 24(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38069411

ABSTRACT

Fibrosis and the associated decline in organ functionality lead to an almost 50% mortality rate in developed countries. Multipotent mesenchymal stromal cells (MSC) were shown to suppress the development and progression of fibrosis through secreted factors including specific non-coding RNAs transferred within extracellular vesicles (EV). However, age-associated chronic inflammation can provoke MSC senescence and change secretome composition, thereby affecting their antifibrotic properties. Alternatively activated macrophages (M2-type) are key players in chronic inflammation that may interact with MSC through paracrine mechanisms and decrease their antifibrotic functions. To confirm this hypothesis, we evaluated the M2-macrophage conditioned medium (CM-M2) effect on human adipose-tissue-derived MSC senescence in vitro. We found that CM-M2, as well as a pro-senescence agent, hydrogen peroxide (H2O2), increased p21+-MSC number and secretion of IL-6 and MCP-1, which are considered main senescence-associated secretory phenotype (SASP) components. Thus, both exposures led to the senescent phenotype acquisition of MSC. EV from both CM-M2 and H2O2-exposed MSC, which showed a decreased effect on the suppression of TGFß-induced fibroblast-to-myofibroblast differentiation compared to EV from control MSC according to αSMA level and the αSMA+-stress fiber reduction. After two weeks of subsequent cultivation under standard conditions, MSC demonstrated a decrease in senescence hallmarks and fibroblast differentiation suppression via EV. These results suggest that M2-macrophage-induced chronic inflammation can reversibly induce MSC senescence, which reduces the MSC's ability to inhibit fibroblast-to-myofibroblast differentiation.


Subject(s)
Cellular Senescence , Mesenchymal Stem Cells , Humans , Hydrogen Peroxide/pharmacology , Macrophages , Inflammation , Fibrosis
7.
Biomolecules ; 13(12)2023 11 29.
Article in English | MEDLINE | ID: mdl-38136590

ABSTRACT

The development of tissue fibrosis is a complex process involving the interaction of multiple cell types, which makes the search for antifibrotic agents rather challenging. So far, myofibroblasts have been considered the key cell type that mediated the development of fibrosis and thus was the main target for therapy. However, current strategies aimed at inhibiting myofibroblast function or eliminating them fail to demonstrate sufficient effectiveness in clinical practice. Therefore, today, there is an unmet need to search for more reliable cellular targets to contribute to fibrosis resolution or the inhibition of its progression. Activated stromal cells, capable of active proliferation and invasive growth into healthy tissue, appear to be such a target population due to their more accessible localization in the tissue and their high susceptibility to various regulatory signals. This subpopulation is marked by fibroblast activation protein alpha (FAPα). For a long time, FAPα was considered exclusively a marker of cancer-associated fibroblasts. However, accumulating data are emerging on the diverse functions of FAPα, which suggests that this protein is not only a marker but also plays an important role in fibrosis development and progression. This review aims to summarize the current data on the expression, regulation, and function of FAPα regarding fibrosis development and identify promising advances in the area.


Subject(s)
Fibroblasts , Serine Endopeptidases , Humans , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Fibroblasts/metabolism , Gelatinases/metabolism , Fibrosis , Stromal Cells/metabolism
8.
Stem Cell Res ; 73: 103259, 2023 12.
Article in English | MEDLINE | ID: mdl-38006675

ABSTRACT

Skin fibroblasts obtained from a 5-year-old girl with genetically proven (two heterozygous mutations in ARSB gene) and clinically manifested mucopolysaccharidosis type VI were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors namely SOX2, OCT3/4, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, had a normal karyotype and the potential to differentiate into three germ layers in spontaneous differentiation assay. The line may be used for cell differentiation and pharmacological investigations, and also may provide a model for development of a personalized treatment including drug screening and genome editing.


Subject(s)
Induced Pluripotent Stem Cells , Mucopolysaccharidosis VI , Female , Humans , Child, Preschool , Induced Pluripotent Stem Cells/metabolism , Mucopolysaccharidosis VI/metabolism , Kruppel-Like Factor 4 , Cell Differentiation/genetics , Fibroblasts/metabolism , Cellular Reprogramming
9.
Stem Cell Res ; 70: 103133, 2023 08.
Article in English | MEDLINE | ID: mdl-37307755

ABSTRACT

Urine cells obtained from a 14-year-old man with genetically proven (ACVR1: c.6176G > A) and clinically manifested fibrodysplasia ossificans progressiva were successfully transformed into induced pluripotent stem cells by using Sendai virus-based reprogramming vectors including the four Yamanaka factors such as OCT3/4, SOX2, KLF4, and c-MYC. These iPSCs expressed pluripotency markers, exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay and had a normal karyotype. The iPSC line may provide a model for development of a personalized treatment including genome editing and drug screening, may be used for disease modelling, cell differentiation and pharmacological investigations. .


Subject(s)
Induced Pluripotent Stem Cells , Myositis Ossificans , Male , Humans , Adolescent , Induced Pluripotent Stem Cells/metabolism , Myositis Ossificans/metabolism , Kruppel-Like Factor 4 , Cell Differentiation/genetics , Sendai virus/genetics , Cellular Reprogramming
10.
Exp Gerontol ; 177: 112176, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37080342

ABSTRACT

The aim of the study was to investigate the relationship between established clinical systemic biomarkers of ageing and the development of age-associated diseases and senescent cell biomarkers at tissue and cellular levels. Thirty-eight patients (mean age 70 ± 4.9 years) who were assessed for traditional risk factors for cardiovascular diseases were included. From all patients we obtained biomaterials (peripheral blood, skin, subcutaneous fatty tissue) and isolated different cell types (peripheral blood mononuclear cells (PBMC), fibroblasts (FB) and mesenchymal stem/stromal cells (MSC)). Isolated cells were analyzed using several senescent cells biomarkers such as telomere length and telomerase activity, proliferation rate, cell cycle inhibitor expression (p16 and p21), b-galactosidase activity, gH2AX expression. CD34+ cell content in peripheral blood was determined by flow cytometry. Systemic senescent cell-associated factors (insulin-like growth factor 1 (IGF-1), fibroblast growth factor 21 (FGF-21), osteoprogerin, ferritin, soluble vascular cell adhesion molecule (VCAM-1), intercellular adhesion molecule 1 (ICAM-1)) in peripheral blood as well as senescence-associated secretory phenotype (SASP) components in MSC and FB secretome were evaluated by ELISA. Skin and adipose tissue biopsy samples were analyzed histologically to assess senescent cell markers. A strong significant association of tissue p16 expression with age (r = 0.600, p < 0.001), pulse wave velocity (PWV) (r = 0.394, p = 0.015), vascular cell adhesion molecule (VCAM-1) content (r = 0.312, p = 0.006) in the systemic blood stream and p16 mRNA level in the blood mononuclear cells (MNCs) (r = 0.380, p = 0.046) were confirmed by correlation analysis. Statistically significant correlations were found with indicators of FBs and MSCs proliferation in culture and acquisition of SASP by the cells. Thus, p16 expression in tissues correlated significantly with interleukin-6 (IL-6) (r = 0.485, p < 0.05) and monocyte chemoattractant protein type 1 (MCP-1) (r = 0.372, p < 0.05) secretion by isolated cells. The results of regression analysis confirmed that, regardless of age, the expression of p16 was associated with the proliferation of isolated cells and IL-6 within SASP. Based on these findings, two models have been proposed to predict the level of p16 expression in tissues from the levels of other markers of senescent cell accumulation determined by non-invasive methods and available in clinical practice.


Subject(s)
Cellular Senescence , Vascular Cell Adhesion Molecule-1 , Cellular Senescence/genetics , Leukocytes, Mononuclear/metabolism , Interleukin-6 , Pulse Wave Analysis , Biomarkers/metabolism , Cells, Cultured
11.
Biomedicines ; 11(3)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36979822

ABSTRACT

Mesenchymal stromal cells (MSCs) are the key regulators of tissue homeostasis and repair after damage. Accumulating evidence indicates the dual contribution of MSCs into the development of fibrosis induced by chronic injury: these cells can suppress the fibrotic process due to paracrine activity, but their promoting role in fibrosis by differentiating into myofibroblasts has also been demonstrated. Many model systems reproducing fibrosis have shown the ability of peroxisome proliferator-activated receptor (PPAR) agonists to reverse myofibroblast differentiation. Thus, the differentiation of multipotent cells into myofibroblasts and adipocytes can be considered as processes that require the activation of opposite patterns of gene expression. To test this hypothesis, we analyzed single cell RNA-Seq transcriptome of human adipose tissue MSCs after stimulation of the myofibroblast or adipogenic differentiation and revealed several genes that changed their expression in a reciprocal manner upon these conditions. We validated the expression of selected genes by RT-PCR, and evaluated the upregulation of several relevant proteins using immunocytochemistry, refining the results obtained by RNA-Seq analysis. We have shown, for the first time, the expression of neurotrimin (NTM), previously studied mainly in the nervous tissue, in human adipose tissue MSCs, and demonstrated its increased gene expression and clustering of membrane receptors upon the stimulation of myofibroblast differentiation. We also showed an increased level of CHD3 (Chromodomain-Helicase-DNA-binding protein 3) in MSCs under profibrotic conditions, while retinol dehydrogenase-10 (RDH10) was detected only in MSCs after adipogenic induction, which contradicted the data of transcriptomic analysis and again highlights the need to validate the data obtained by omics methods. Our findings suggest the further analysis of the potential contribution of neurotrimin and CHD3 in the regulation of myofibroblast differentiation and the development of fibrosis.

12.
Cells ; 12(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36831252

ABSTRACT

Hypertension is a major risk factor for cardiovascular diseases, such as strokes and myocardial infarctions. Nearly 70% of hypertension onsets in adults can be attributed to obesity, primarily due to sympathetic overdrive and the dysregulated renin-angiotensin system. Sympathetic overdrive increases vasoconstriction via α1-adrenoceptor activation on vascular cells. Despite the fact that a sympathetic outflow increases in individuals with obesity, as a rule, there is a cohort of patients with obesity who do not develop hypertension. In this study, we investigated how adrenoceptors' expression and functioning in adipose tissue are affected by obesity-driven hypertension. Here, we demonstrated that α1A is a predominant isoform of α1-adrenoceptors expressed in the adipose tissue of patients with obesity, specifically by multipotent mesenchymal stromal cells (MSCs). These cells respond to prolonged exposure to noradrenaline in the model of sympathetic overdrive through the elevation of α1A-adrenoceptor expression and signaling. The extent of MSCs' response to noradrenaline correlates with a patient's arterial hypertension. scRNAseq analysis revealed that in the model of sympathetic overdrive, the subpopulation of MSCs with contractile phenotype expanded significantly. Elevated α1A-adrenoceptor expression is triggered specifically by beta3-adrenoceptors. These data define a novel pathophysiological mechanism of obesity-driven hypertension by which noradrenaline targets MSCs to increase microvessel constrictor responsivity.


Subject(s)
Hypertension , Mesenchymal Stem Cells , Humans , Receptors, Adrenergic, alpha-1/metabolism , Norepinephrine , Receptors, Adrenergic, beta-3 , Obesity , Mesenchymal Stem Cells/metabolism
13.
Diagnostics (Basel) ; 13(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36832185

ABSTRACT

Visualization of the interaction of drugs with biological cells creates new approaches to improving the bioavailability, selectivity, and effectiveness of drugs. The use of CLSM and FTIR spectroscopy to study the interactions of antibacterial drugs with latent bacterial cells localized in macrophages create prospects to solve the problems of multidrug resistance (MDR) and severe cases. Here, the mechanism of rifampicin penetration into E. coli bacterial cells was studied by tracking the changes in the characteristic peaks of cell wall components and intracellular proteins. However, the effectiveness of the drug is determined not only by penetration, but also by efflux of the drugs molecules from the bacterial cells. Here, the efflux effect was studied and visualized using FTIR spectroscopy, as well as CLSM imaging. We have shown that because of efflux inhibition, eugenol acting as an adjuvant for rifampicin showed a significant (more than three times) increase in the antibiotic penetration and the maintenance of its intracellular concentration in E. coli (up to 72 h in a concentration of more than 2 µg/mL). In addition, optical methods have been applied to study the systems containing bacteria localized inside of macrophages (model of the latent form), where the availability of bacteria for antibiotics is reduced. Polyethylenimine grafted with cyclodextrin carrying trimannoside vector molecules was developed as a drug delivery system for macrophages. Such ligands were absorbed by CD206+ macrophages by 60-70% versus 10-15% for ligands with a non-specific galactose label. Owing to presence of ligands with trimannoside vectors, the increase in antibiotic concentration inside macrophages, and thus, its accumulation into dormant bacteria, is observed. In the future, the developed FTIR+CLSM techniques would be applicable for the diagnosis of bacterial infections and the adjustment of therapy strategies.

15.
Front Cell Dev Biol ; 10: 1050489, 2022.
Article in English | MEDLINE | ID: mdl-36467400

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.

16.
Int J Mol Sci ; 23(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36555785

ABSTRACT

Macrophages are a promising target for drug delivery to influence macrophage-associated processes in the body, namely due to the presence of resistant microorganisms in macrophages. In this work, a series of mannosylated carriers based on mannan, polyethylenimine (PEI) and cyclodextrin (CD) was synthesized. The molecular architecture was studied using FTIR and 1H NMR spectroscopy. The particle size, from small 10-50 nm to large 500 nm, depending on the type of carrier, is potentially applicable for the creation of various medicinal forms: intravenous, oral and inhalation. Non-specific capture by cells with a simultaneous increase in selectivity to CD206+ macrophages was achieved. ConA was used as a model mannose receptor, binding galactosylated (CD206 non-specific) carriers with constants of the order of 104 M-1 and mannosylated conjugates of 106-107 M-1. The results of such primary "ConA-screening" of ligands are in a good agreement in terms of the comparative effectiveness of the interaction of ligands with the CD206+ macrophages: non-specific (up to 10%) absorption of highly charged and small particles; weakly specific uptake of galactosylated polymers (up to 50%); and high affine capture (more than 70-80%) of the ligands with grafted trimannoside was demonstrated using the cytometry method. Double and multi-complexes of antibacterials (moxifloxacin with its adjuvants from the class of terpenoids) were proposed as enhanced forms against resistant pathogens. In vivo pharmacokinetic experiments have shown that polymeric carriers significantly improve the efficiency of the antibiotic: the half-life of moxifloxacin is increased by 2-3 times in conjugate-loaded forms, bio-distribution to the lungs in the first hours after administration of the drug is noticeably greater, and, after 4 h of observation, free moxifloxacin was practically removed from the lungs of rats. Although, in polymer systems, its content is significant-1.2 µg/g. Moreover, the importance of the covalent crosslinking carrier with mannose label was demonstrated. Thus, this paper describes experimental, scientifically based methods of targeted drug delivery to macrophages to create enhanced medicinal forms.


Subject(s)
Drug Delivery Systems , Macrophages , Rats , Animals , Moxifloxacin , Macrophages/metabolism , Polymers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Mannose/metabolism , Drug Carriers/chemistry
17.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36297284

ABSTRACT

Bacterial infections and especially resistant strains of pathogens localized in macrophages and granulomas are intractable diseases that pose a threat to millions of people. In this paper, the theoretical and experimental foundations for solving this problem are proposed due to two key aspects. The first is the use of a three-component polymer system for delivering fluoroquinolones to macrophages due to high-affinity interaction with mannose receptors (CD206). Cytometry assay determined that 95.5% macrophage-like cells were FITC-positive after adding high-affine to CD206 trimannoside conjugate HPCD-PEI1.8-triMan, and 61.7% were FITC-positive after adding medium-affine ligand with linear mannose label HPCD-PEI1.8-Man. The second aspect is the use of adjuvants, which are synergists for antibiotics. Using FTIR and NMR spectroscopy, it was shown that molecular containers, namely mannosylated polyethyleneimines (PEIs) and cyclodextrins (CDs), load moxifloxacin (MF) with dissociation constants of the order of 10-4-10-6 M; moreover, due to prolonged release and adsorption on the cell membrane, they enhance the effect of MF. Using CLSM, it was shown that eugenol (EG) increases the penetration of doxorubicin (Dox) into cells by an order of magnitude due to the creation of defects in the bacterial wall and the inhibition of efflux proteins. Fluorescence spectroscopy showed that 0.5% EG penetrates into bacteria and inhibits efflux proteins, which makes it possible to increase the maximum concentration of the antibiotic by 60% and maintain it for several hours until the pathogens are completely neutralized. Regulation of efflux is a possible way to overcome multiple drug resistance of both pathogens and cancer cells.

18.
Stem Cell Res ; 64: 102896, 2022 10.
Article in English | MEDLINE | ID: mdl-36067639

ABSTRACT

Induced pluripotent stem cells (iPSCs) was successfully generated from skin fibroblast obtained from patient with cystic fibrosis by using non-integrating, viral CytoTune™-iPS 2.0 Sendai Reprogramming Kit, which contain three vectors preparation: polycistronic Klf4-Oct3/4-Sox2, cMyc, and Klf4. Created iPSC lines showed a normal karyotype, expressed pluripotency markers and demonstrated the potential to differentiate into three germ layers in spontaneous differentiation assay.


Subject(s)
Cystic Fibrosis , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Inducible T-Cell Co-Stimulator Protein/metabolism , Mutation , Cell Differentiation , Fibroblasts/metabolism
19.
Stem Cell Res ; 63: 102854, 2022 08.
Article in English | MEDLINE | ID: mdl-35843019

ABSTRACT

Skin fibroblasts obtained from a 20-year-old woman with clinically manifested and genetically proven (F508del/CFTRdele2.3) cystic fibrosis were successfully transformed into induced pluripotent stem cells (iPSCs) by using Sendai virus-based reprogramming vectors including the four Yamanaka factors, OCT3/4, SOX2, KLF4, and c-MYC. The iPSCs showed a normal karyotype, expressed pluripotency markers and exhibited the potential to differentiate into three germ layers in spontaneous differentiation assay. This iPSC line may be used for development of a personalized treatment including genome editing, disease modelling, cell differentiation and organoid formation, pharmacological investigations and drug screening.


Subject(s)
Cystic Fibrosis , Induced Pluripotent Stem Cells , Adult , Cell Differentiation/genetics , Cellular Reprogramming , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Fibroblasts/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Young Adult
20.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682734

ABSTRACT

Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15-/- mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15-/- mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15-/- mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15-/- knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15-/- knockout mice a suitable model for mild mitochondriopathies.


Subject(s)
Mitochondria , Mitochondrial Ribosomes , Animals , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Ribosomes/metabolism , RNA Processing, Post-Transcriptional
SELECTION OF CITATIONS
SEARCH DETAIL
...