Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Biofactors ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299761

ABSTRACT

Recently, we characterized the ferroptotic phenotype in the liver of diabetic mice and revealed nuclear factor (erythroid-derived-2)-related factor 2 (Nrf2) inactivation as an integral part of hepatic injury. Here, we aim to investigate whether sulforaphane, an Nrf2 activator and antioxidant, prevents diabetes-induced hepatic ferroptosis and the mechanisms involved. Male C57BL/6 mice were divided into four groups: control (vehicle-treated), diabetic (streptozotocin-induced; 40 mg/kg, from Days 1 to 5), diabetic sulforaphane-treated (2.5 mg/kg from Days 1 to 42) and non-diabetic sulforaphane-treated group (2.5 mg/kg from Days 1 to 42). Results showed that diabetes-induced inactivation of Nrf2 and decreased expression of its downstream antiferroptotic molecules critical for antioxidative defense (catalase, superoxide dismutases, thioredoxin reductase), iron metabolism (ferritin heavy chain (FTH1), ferroportin 1), glutathione (GSH) synthesis (cystine-glutamate antiporter system, cystathionase, glutamate-cysteine ligase catalitic subunit, glutamate-cysteine ligase modifier subunit, glutathione synthetase), and GSH recycling - glutathione reductase (GR) were reversed/increased by sulforaphane treatment. In addition, we found that the ferroptotic phenotype in diabetic liver is associated with increased ferritinophagy and decreased FTH1 immunopositivity. The antiferroptotic effect of sulforaphane was further evidenced through the increased level of GSH, decreased accumulation of labile iron and lipid peroxides (4-hydroxy-2-nonenal, lipofuscin), decreased ferritinophagy and liver damage (decreased fibrosis, alanine aminotransferase, and aspartate aminotransferase). Finally, diabetes-induced increase in serum glucose and triglyceride level was significantly reduced by sulforaphane. Regardless of the fact that this study is limited by the use of one model of experimentally induced diabetes, the results obtained demonstrate for the first time that sulforaphane prevents diabetes-induced hepatic ferroptosis in vivo through the activation of Nrf2 signaling pathways. This nominates sulforaphane as a promising phytopharmaceutical for the prevention/alleviation of ferroptosis in diabetes-related pathologies.

2.
Int J Mol Sci ; 24(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37685970

ABSTRACT

The careful monitoring of patients with mild/moderate COVID-19 is of particular importance because of the rapid progression of complications associated with COVID-19. For prognostic reasons and for the economic management of health care resources, additional biomarkers need to be identified, and their monitoring can conceivably be performed in the early stages of the disease. In this retrospective cross-sectional study, we found that serum concentrations of high-mobility group box 1 (HMGB1) and heme oxygenase-1 (HO-1), at the time of hospital admission, could be useful biomarkers for COVID-19 management. The study included 160 randomly selected recovered patients with mild to moderate COVID-19 on admission. Compared with healthy controls, serum HMGB1 and HO-1 levels increased by 487.6 pg/mL versus 43.1 pg/mL and 1497.7 pg/mL versus 756.1 pg/mL, respectively. Serum HO-1 correlated significantly with serum HMGB1, oxidative stress parameters (malondialdehyde (MDA), the phosphatidylcholine/lysophosphatidylcholine ratio (PC/LPC), the ratio of reduced and oxidative glutathione (GSH/GSSG)), and anti-inflammatory acute phase proteins (ferritin, haptoglobin). Increased heme catabolism/hemolysis were not detected. We hypothesize that the increase in HO-1 in the early phase of COVID-19 disease is likely to have a survival benefit by providing protection against oxidative stress and inflammation, whereas the level of HMGB1 increase reflects the activity of the innate immune system and represents levels within which the disease can be kept under control.


Subject(s)
COVID-19 , HMGB1 Protein , Humans , Heme Oxygenase-1 , Cross-Sectional Studies , Retrospective Studies , Biomarkers , Glutathione , Hospitals
3.
Front Endocrinol (Lausanne) ; 14: 1227498, 2023.
Article in English | MEDLINE | ID: mdl-37600723

ABSTRACT

Introduction: Recently, the involvement of ferroptotic cell death in the reduction of ß-cell mass in diabetes has been demonstrated. To elucidate the mechanisms of ß-cell ferroptosis and potential antidiabetic effects of the ferroptosis inhibitor ferrostatin-1 (Fer-1) in vivo, a mouse model of type 1 diabetes (T1D) was used. Methods: Animals were divided into three groups: control (vehicle-treated), diabetic (streptozotocin-treated, 40 mg/kg, from days 1-5), and diabetic treated with Fer-1 (1 mg/kg, from days 1-21). On day 22, glycemia and insulinemia were measured and pancreases were isolated for microscopic analyses. Results: Diabetes disturbed general parameters of ß-cell mass (islet size, ß-cell abundance and distribution) and health (insulin and PDX-1 expression), increased lipid peroxidation in islet cells, and phagocytic removal of iron-containing material. It also downregulated the main players of the antiferroptotic pathway - Nrf2, GPX4, and xCT. In contrast, Fer-1 ameliorated the signs of deterioration of ß-cell/islets, decreased lipid peroxidation, and reduced phagocytic activity, while upregulated expression of Nrf2 (and its nuclear translocation), GPX4, and xCT in ß-cell/islets. Discussion: Overall, our study confirms ferroptosis as an important mode of ß-cell death in T1D and suggests antiferroptotic agents as a promising strategy for the prevention and treatment of diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Mice , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , NF-E2-Related Factor 2
4.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012572

ABSTRACT

Cell death plays an important role in diabetes-induced liver dysfunction. Ferroptosis is a newly defined regulated cell death caused by iron-dependent lipid peroxidation. Our previous studies have shown that high glucose and streptozotocin (STZ) cause ß-cell death through ferroptosis and that ferrostatin-1 (Fer-1), an inhibitor of ferroptosis, improves ß-cell viability, islet morphology, and function. This study was aimed to examine in vivo the involvement of ferroptosis in diabetes-related pathological changes in the liver. For this purpose, male C57BL/6 mice, in which diabetes was induced with STZ (40 mg/kg/5 consecutive days), were treated with Fer-1 (1 mg/kg, from day 1-21 day). It was found that in diabetic mice Fer-1 improved serum levels of ALT and triglycerides and decreased liver fibrosis, hepatocytes size, and binucleation. This improvement was due to the Fer-1-induced attenuation of ferroptotic events in the liver of diabetic mice, such as accumulation of pro-oxidative parameters (iron, lipofuscin, 4-HNE), decrease in expression level/activity of antioxidative defense-related molecules (GPX4, Nrf2, xCT, GSH, GCL, HO-1, SOD), and HMGB1 translocation from nucleus into cytosol. We concluded that ferroptosis contributes to diabetes-related pathological changes in the liver and that the targeting of ferroptosis represents a promising approach in the management of diabetes-induced liver injury.


Subject(s)
Diabetes Mellitus, Experimental , Ferroptosis , Animals , Diabetes Mellitus, Experimental/metabolism , Iron/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
5.
Oxid Med Cell Longev ; 2022: 3873420, 2022.
Article in English | MEDLINE | ID: mdl-35320979

ABSTRACT

The main pathological hallmark of diabetes is the loss of functional ß-cells. Among several types of ß-cell death in diabetes, the involvement of ferroptosis remains elusive. Therefore, we investigated the potential of diabetes-mimicking factors: high glucose (HG), proinflammatory cytokines, hydrogen peroxide (H2O2), or diabetogenic agent streptozotocin (STZ) to induce ferroptosis of ß-cells in vitro. Furthermore, we tested the contribution of ferroptosis to injury of pancreatic islets in an STZ-induced in vivo diabetic model. All in vitro treatments increased loss of Rin-5F cells along with the accumulation of reactive oxygen species, lipid peroxides and iron, inactivation of NF-E2-related factor 2 (Nrf2), and decrease in glutathione peroxidase 4 expression and mitochondrial membrane potential (MMP). Ferrostatin 1 (Fer-1), ferroptosis inhibitor, diminished the above-stated effects and rescued cells from death in case of HG, STZ, and H2O2 treatments, while failed to increase MMP and to attenuate cell death after the cytokines' treatment. Moreover, Fer-1 protected pancreatic islets from STZ-induced injury in diabetic in vivo model, since it decreased infiltration of macrophages and accumulation of lipid peroxides and increased the population of insulin-positive cells. Such results revealed differences between diabetogenic stimuli in determining the destiny of ß-cells, emerging HG, H2O2, and STZ, but not cytokines, as contributing factors to ferroptosis and shed new light on an antidiabetic strategy based on Nrf2 activation. Thus, targeting ferroptosis in diabetes might be a promising new approach for preservation of the ß-cell population. Our results obtained from in vivo study strongly justify this approach.


Subject(s)
Diabetes Mellitus , Ferroptosis , Insulin-Secreting Cells , Cell Death , Humans , Hydrogen Peroxide
6.
Int J Mol Sci ; 22(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34575863

ABSTRACT

Sepsis is a life-threatening condition caused by the dysregulated and overwhelming response to infection, accompanied by an exaggerated pro-inflammatory state and lipid metabolism disturbance leading to sequential organ failure. Meldonium is an anti-ischemic and anti-inflammatory agent which negatively interferes with lipid metabolism by shifting energy production from fatty acid oxidation to glycolysis, as a less oxygen-demanding pathway. Thus, we investigated the effects of a four-week meldonium pre-treatment on faecal-induced sepsis in Sprague-Dawley male rats. Surprisingly, under septic conditions, meldonium increased animal mortality rate compared with the meldonium non-treated group. However, analysis of the tissue oxidative status did not provide support for the detrimental effects of meldonium, nor did the analysis of the tissue inflammatory status showing anti-inflammatory, anti-apoptotic, and anti-necrotic effects of meldonium. After performing tissue lipidomic analysis, we concluded that the potential cause of the meldonium harmful effect is to be found in the overall decreased lipid metabolism. The present study underlines the importance of uninterrupted energy production in sepsis, closely drawing attention to the possible harmful effects of lipid-mobilization impairment caused by certain therapeutics. This could lead to the much-needed revision of the existing guidelines in the clinical treatment of sepsis while paving the way for discovering new therapeutic approaches.


Subject(s)
Feces/microbiology , Methylhydrazines/pharmacology , Sepsis/prevention & control , Adrenal Glands/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Apoptosis , Biomarkers , Epinephrine/metabolism , Fatty Acids/metabolism , Inflammation , Lipid Metabolism/drug effects , Lipid Peroxidation , Lipidomics , Male , Norepinephrine/metabolism , Oxidative Stress , Oxygen/chemistry , Rats , Rats, Sprague-Dawley , Temperature , Treatment Outcome , Triglycerides/metabolism , Troponin T/blood
7.
Antioxidants (Basel) ; 10(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199786

ABSTRACT

Thioacetamide (TAA) is widely used to study liver toxicity accompanied by oxidative stress, inflammation, cell necrosis, fibrosis, cholestasis, and hepatocellular carcinoma. As an efficient free radical's scavenger, C60 fullerene is considered a potential liver-protective agent in chemically-induced liver injury. In the present work, we examined the hepatoprotective effects of two C60 doses dissolved in virgin olive oil against TAA-induced hepatotoxicity in rats. We showed that TAA-induced increase in liver oxidative stress, judged by the changes in the activities of SOD, CAT, GPx, GR, GST, the content of GSH and 4-HNE, and expression of HO-1, MnSOD, and CuZnSOD, was more effectively ameliorated with a lower C60 dose. Improvement in liver antioxidative status caused by C60 was accompanied by a decrease in liver HMGB1 expression and an increase in nuclear Nrf2/NF-κB p65 ratio, suggesting a reduction in inflammation, necrosis and fibrosis. These results were in accordance with liver histology analysis, liver comet assay, and changes in serum levels of ALT, AST, and AP. The changes observed in gut microbiome support detrimental effects of TAA and hepatoprotective effects of low C60 dose. Less protective effects of a higher C60 dose could be a consequence of its enhanced aggregation and related pro-oxidant role.

8.
Int J Mol Sci ; 22(6)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801983

ABSTRACT

Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.


Subject(s)
Fatty Acids/metabolism , Lipidomics/methods , Lipids/analysis , Reperfusion Injury/therapy , Adipose Tissue/metabolism , Animals , Carnitine/metabolism , Humans , Lipids/chemistry , Mitochondria/metabolism , Oxidative Stress , Reperfusion Injury/diagnosis , Reperfusion Injury/metabolism
9.
Int J Mol Sci ; 20(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731785

ABSTRACT

Acute renal ischemia/reperfusion (I/R) injury is a clinical condition that is challenging to treat. Meldonium is an anti-ischemic agent that shifts energy production from fatty acid oxidation to less oxygen-consuming glycolysis. Thus, in this study we investigated the effects of a four-week meldonium pre-treatment (300 mg/kg b.m./day) on acute renal I/R in male rats (Wistar strain). Our results showed that meldonium decreased animal body mass gain, food and water intake, and carnitine, glucose, and lactic acid kidney content. In kidneys of animals subjected to I/R, meldonium increased phosphorylation of mitogen-activated protein kinase p38 and protein kinase B, and increased the expression of nuclear factor erythroid 2-related factor 2 and haeme oxygenase 1, causing manganese superoxide dismutase expression and activity to increase, as well as lipid peroxidation, cooper-zinc superoxide dismutase, glutathione peroxidase, and glutathione reductase activities to decrease. By decreasing the kidney Bax/Bcl2 expression ratio and kidney and serum high mobility group box 1 protein content, meldonium reduced apoptotic and necrotic events in I/R, as confirmed by kidney histology. Meldonium increased adrenal noradrenaline content and serum, adrenal, hepatic, and renal ascorbic/dehydroascorbic acid ratio, which caused complex changes in renal lipidomics. Taken together, our results have confirmed that meldonium pre-treatment protects against I/R-induced oxidative stress and apoptosis/necrosis.


Subject(s)
Acute Kidney Injury/drug therapy , Methylhydrazines/therapeutic use , Reperfusion Injury/drug therapy , Animals , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Male , Norepinephrine/metabolism , Oxidative Stress/drug effects , Phosphorylation/drug effects , Rats , Rats, Wistar , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
10.
BMC Res Notes ; 12(1): 278, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31092295

ABSTRACT

OBJECTIVE: Peptic ulcer disease is a condition in which an important role has infection with H. pylori. The most common complication of peptic ulcer is bleeding. The presence of H. pylori triggers local and systemic cytokine signaling which may affect processes such as healing, gastric or duodenal rupture, and carcinogenesis. In this study, we examined the concentrations of IL-1ß, IL-6, IL-10, TNF, TGF-ß and IL-17A in serum by enzyme immunoassay and their mRNA expressions in periulcer biopsies obtained from patients with bleeding peptic ulcer by means of real-time-PCR. RESULTS: We have shown that pro-inflammatory IL-6 and TNF concentrations in serum were significantly higher in patients who were infected with H. pylori, while the concentrations of TGF-ß and IL-17A were significantly lower compared to non-infected subjects. IL-17A expression in periulcer mucosa was significantly higher in patients who were infected with H. pylori, while the expression of other cytokines, there was no significant difference compared to non-infected controls. Considering higher serum concentrations in non-infected subjects and higher IL-17A expression in mucosal tissue of infected patients, our data support the studies that found IL-17A has protective role in eradication of H. pylori infection in infected patients.


Subject(s)
Cytokines/genetics , Duodenal Ulcer/microbiology , Gastrointestinal Hemorrhage/microbiology , Gene Expression Regulation , Helicobacter Infections/microbiology , Helicobacter pylori/physiology , Cytokines/blood , Cytokines/metabolism , Duodenal Ulcer/blood , Duodenal Ulcer/complications , Duodenal Ulcer/genetics , Female , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastrointestinal Hemorrhage/blood , Gastrointestinal Hemorrhage/complications , Gastrointestinal Hemorrhage/genetics , Helicobacter Infections/blood , Helicobacter Infections/complications , Helicobacter Infections/genetics , Humans , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Food Funct ; 10(4): 2114-2124, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30919867

ABSTRACT

The aim of this study was to investigate the potential protective effect of virgin coconut oil (VCO) on oxidative stress parameters in the liver, kidneys and heart of alloxan-induced (150 mg kg-1 i.p.-1) diabetes in rats. Our results showed that daily supplementation of VCO (20% of food) for 16 weeks significantly (p < 0.05) ameliorates some deleterious effects caused by alloxan. VCO reduced the diabetes-related increase in food (82.15 ± 1.49 vs. 145.51 ± 4.81 g per kg b.m. per day) and water (305.49 ± 6.09 vs. 583.98 ± 14.80 mL per kg b.m. per day) intake, and the decrease in the body mass gain (0.56 ± 0.16 vs. -2.13 ± 0.49 g per 100 g b.m. per week). In all three tissues, diabetes caused an increase in the concentration of total glutathione and sulfhydryl groups, and catalase and glutathione S-transferase activities, without changes in superoxide dismutase activity. Glutathione peroxidase activity was increased in the kidneys and heart, but not in the liver of the diabetic animals, while glutathione reductase activity was increased in the liver and the kidneys, and not in the heart. The simultaneous VCO supplementation increased the concentration of the sulfhydryl group in all three tissues of diabetic animals and decreased the glutathione S-transferase activity and glutathione concentration, without affecting the glutathione reductase activity. In the liver of diabetic animals it decreased superoxide dismutase, catalase and glutathione peroxidase activities, in the heart catalase and glutathione peroxidase activities, and in the kidney catalase activity only. The results of canonical discriminant analysis of oxidative stress parameters revealed that VCO exerts its effects in a tissue-specific manner.


Subject(s)
Coconut Oil/metabolism , Diabetes Mellitus, Experimental/diet therapy , Kidney/metabolism , Liver/metabolism , Myocardium/metabolism , Oxidative Stress , Protective Agents/metabolism , Alloxan/adverse effects , Animals , Catalase/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Humans , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism
12.
J. physiol. biochem ; 74(2): 345-358, mayo 2018.
Article in English | IBECS | ID: ibc-178990

ABSTRACT

Chronic inflammation plays an essential role in the development of diabetic complications. Understanding the molecular mechanisms that support inflammation is a prerequisite for the design of novel anti-inflammatory therapies. These would take into consideration circulating levels of cytokines and damage-associated molecular patterns (DAMPs) that include the high mobility group box 1 (HMGB1) protein which, in part, promotes the inflammatory response through TLR4 signaling. The liver, as the source of circulating cytokines and acute-phase proteins, contributes to the control of systemic inflammation. We previously found that liver injury in streptozotocin-induced diabetic rats correlated with the level of oxidative stress, increased expression of HMGB1, and with the activation of TLR4-mediated cell death pathways. In the present work, we examined the effects of ethyl pyruvate (EP), an inhibitor of HMGB1 release/expression, on the modulation of activation of the HMGB1/TLR4 inflammatory cascade in diabetic liver. We observed that increased expression of inflammatory markers, TNF-α, IL-6, and haptoglobin in diabetic liver was associated with increased HMGB1/TLR4 interaction, activation of MAPK (p38, ERK, JNK)/NF-κB p65 and JAK1/STAT3 signaling pathways, and with decreased expression of Nrf2-regulated antioxidative enzymes. The reduction in HMGB1 expression as the result of EP administration reduced the pro-inflammatory activity of HMGB1 and exerted a protective effect on diabetic liver, which was observed as improved liver histology and antioxidant and inflammatory statuses. Our results suggest that prevention of HMGB1 release and blockage of the HMGB/TLR4 axis represents a potentially effective therapeutic strategy aimed at ameliorating diabetes-induced inflammation and ensuing liver injury


Subject(s)
Humans , Animals , Diabetes Mellitus, Experimental/complications , HMGB1 Protein/metabolism , Inflammation/metabolism , Liver Diseases/complications , Toll-Like Receptor 4/metabolism , Biomarkers/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Haptoglobins/metabolism , Interleukin-6/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , NF-E2-Related Factor 2/metabolism , Rats, Wistar
13.
J Physiol Biochem ; 74(2): 345-358, 2018 May.
Article in English | MEDLINE | ID: mdl-29611132

ABSTRACT

Chronic inflammation plays an essential role in the development of diabetic complications. Understanding the molecular mechanisms that support inflammation is a prerequisite for the design of novel anti-inflammatory therapies. These would take into consideration circulating levels of cytokines and damage-associated molecular patterns (DAMPs) that include the high mobility group box 1 (HMGB1) protein which, in part, promotes the inflammatory response through TLR4 signaling. The liver, as the source of circulating cytokines and acute-phase proteins, contributes to the control of systemic inflammation. We previously found that liver injury in streptozotocin-induced diabetic rats correlated with the level of oxidative stress, increased expression of HMGB1, and with the activation of TLR4-mediated cell death pathways. In the present work, we examined the effects of ethyl pyruvate (EP), an inhibitor of HMGB1 release/expression, on the modulation of activation of the HMGB1/TLR4 inflammatory cascade in diabetic liver. We observed that increased expression of inflammatory markers, TNF-α, IL-6, and haptoglobin in diabetic liver was associated with increased HMGB1/TLR4 interaction, activation of MAPK (p38, ERK, JNK)/NF-κB p65 and JAK1/STAT3 signaling pathways, and with decreased expression of Nrf2-regulated antioxidative enzymes. The reduction in HMGB1 expression as the result of EP administration reduced the pro-inflammatory activity of HMGB1 and exerted a protective effect on diabetic liver, which was observed as improved liver histology and antioxidant and inflammatory statuses. Our results suggest that prevention of HMGB1 release and blockage of the HMGB/TLR4 axis represents a potentially effective therapeutic strategy aimed at ameliorating diabetes-induced inflammation and ensuing liver injury.


Subject(s)
Diabetes Mellitus, Experimental/complications , HMGB1 Protein/metabolism , Inflammation/metabolism , Liver Diseases/complications , Toll-Like Receptor 4/metabolism , Animals , Biomarkers/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Haptoglobins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Humans , Interleukin-6/metabolism , Liver Diseases/metabolism , Liver Diseases/pathology , MAP Kinase Signaling System , Male , NF-E2-Related Factor 2/metabolism , Protein Kinases/metabolism , Pyruvates/pharmacology , Rats, Wistar , Streptozocin , Tumor Necrosis Factor-alpha/metabolism
14.
J. physiol. biochem ; 73(4): 511-521, nov. 2017. ilus, graf
Article in English | IBECS | ID: ibc-178901

ABSTRACT

The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolyso some formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed


Subject(s)
Animals , Rats , Apoptosis/physiology , Autophagy/physiology , Diabetes Mellitus, Experimental/pathology , HMGB1 Protein/physiology , Liver/pathology , Oxidative Stress , Melatonin
15.
J Physiol Biochem ; 73(4): 511-521, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28695466

ABSTRACT

The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.


Subject(s)
Apoptosis/physiology , Autophagy/physiology , Diabetes Mellitus, Experimental/pathology , HMGB1 Protein/physiology , Liver/pathology , Oxidative Stress , Animals , Rats
16.
J Med Biochem ; 36(1): 44-53, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28680349

ABSTRACT

BACKGROUND: Intra-abdominal infection in secondary peritonitis drives as excessive production of inflammatory mediators and the development of systemic inflammatory response syndrome (SIRS) or sepsis. Finding a specific marker to distinguish SIRS from sepsis would be of immense clinical importance for the therapeutic approach. It is assumed that high-mobility group box 1 protein (HMGB1) could be such a marker. In this study, we examined the time course changes in the blood levels of HMGB1, C-reactive protein (CRP), procalcitonin (PCT) and serum amyloid A (SAA) in patients with secondary peritonitis who developed SIRS or sepsis. METHODS: In our study, we evaluated 100 patients with diffuse secondary peritonitis who developed SIRS or sepsis (SIRS and SEPSIS group) and 30 patients with inguinal hernia as a control group. Serum levels of HMGB1, CRP, PCT, and SAA were determined on admission in all the patients, and monitored daily in patients with peritonitis until discharge from hospital. RESULTS: Preoperative HMGB1, CRP, PCT and SAA levels were statistically highly significantly increased in patients with peritonitis compared to patients with inguinal hernia, and significantly higher in patients with sepsis compared to those with SIRS. All four inflammatory markers changed significantly during the follow-up. It is interesting that the patterns of change of HMGB1 and SAA over time were distinctive for SIRS and SEPSIS groups. CONCLUSIONS: HMGB1 and SAA temporal patterns might be useful in distinguishing sepsis from noninfectious SIRS in secondary peritonitis.

17.
Toxicol Lett ; 237(2): 89-99, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26051590

ABSTRACT

Gastrointestinal tract is one of the main targets of cadmium (Cd), an important food and drinking water contaminant. In the present study, the effect of subchronic (30 days) oral (in water) intake of 5ppm and 50ppm of cadmium on immune responses in the gut was examined in rats. Cadmium consumption resulted in reduction of bacteria corresponding to Lactobacillus strain, tissue damage and intestinal inflammation [increases in high mobility group box 1 (HMGB1 molecules), superoxide dismutase (SOD) and catalase (CAT) activity and proinflammatory cytokine (TNF, IL-1ß, IFN-γ, IL-17) content]. Draining (mesenteric) lymph node (MLN) stress response was observed [elevation of MLN glutathione (GSH) and metallothionein (MT) mRNA levels] and stimulation of both adaptive [cellularity, proliferation, proinflammatory (IFN-γ and IL-17) MLN cell cytokine responses] as well as innate immune activity (increases in numbers of NK and CD68(+) cells, oxidative activities, IL-1ß). In contrast to proinflammatory milieu in MLN, decreased or unchanged antiinflammatory IL-10 response was observed. Stimulation of immune activities of MLN cells have, most probably, resulted from sensing of cadmium-induced tissue injury, but also from bacterial antigens that breached compromised intestinal barrier. These effects of cadmium should be taken into account when assessing dietary cadmium as health risk factor.


Subject(s)
Cadmium/toxicity , Intestines/drug effects , Animals , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/biosynthesis , Immunity, Innate/drug effects , Intestinal Mucosa/metabolism , Intestines/immunology , Intestines/pathology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Male , Rats
18.
J. physiol. biochem ; 70(4): 947-959, dic. 2014.
Article in English | IBECS | ID: ibc-131428

ABSTRACT

Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H2O2 production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy (AU)


Subject(s)
Animals , Triazoles/pharmacokinetics , Apoptosis/physiology , Apoptosis , Catalase/antagonists & inhibitors , DNA Damage , Cardiomyopathies/physiopathology , Diabetes Mellitus/physiopathology , Mice, Inbred NOD , Cell Death
19.
J Physiol Biochem ; 70(4): 947-59, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25298180

ABSTRACT

Diabetes is a risk factor for cardiovascular disease that has a multifactorial etiology, with oxidative stress as an important component. Our previous observation of a significant diabetes-related increase in rat cardiac catalase (CAT) activity suggested that CAT could play a major role in delaying the development of diabetic cardiomyopathy. Thus, in the present work, we examined the effects of the daily administration of the CAT inhibitor, 3-amino-1,2,4-triazole (1 mg/g), on the hearts of streptozotocin (STZ)-induced diabetic rats. Administration of CAT inhibitor was started from the 15th day after the last STZ treatment (40 mg/kg/5 days), and maintained until the end of the 4th or 6th weeks of diabetes. Compared to untreated diabetic rats, at the end of the observation period, CAT inhibition lowered the induced level of cardiac CAT activity to the basal level and decreased CAT protein expression, mediated through a decline in the nuclear factor erythroid-derived 2-like 2 /nuclear factor-kappa B p65 (Nrf2/NF-κB p65) subunit ratio. The perturbed antioxidant defenses resulting from CAT inhibition promoted increased H2O2production (P < 0.05) and lipid peroxidation (P < 0.05). Generated cytotoxic stimuli increased DNA damage (P < 0.05) and activated pro-apoptotic events, observed as a decrease (P < 0.05) in the ratio of the apoptosis regulator proteins Bcl-2/Bax, increased (P < 0.05) presence of the poly(ADP-ribose) polymerase-1 (PARP-1) 85 kDa apoptotic fragment and cytoplasmic levels of cytochrome C. These findings confirm an important function of CAT in the suppression of events leading to diabetes-promoted cardiac dysfunction and cardiomyopathy.


Subject(s)
Catalase/physiology , DNA Damage , Diabetes Mellitus, Experimental/complications , Diabetic Cardiomyopathies/etiology , Amitrole/pharmacology , Animals , Apoptosis , Catalase/antagonists & inhibitors , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/pathology , Enzyme Inhibitors/pharmacology , Male , Myocardium/enzymology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress , Rats, Wistar , Signal Transduction
20.
J. physiol. biochem ; 70(2): 441-450, jun. 2014.
Article in English | IBECS | ID: ibc-122965

ABSTRACT

Oxidative stress-mediated damage to liver tissue underlies the pathological alterations in liver morphology and function that are observed in diabetes. We examined the effects of the antioxidant action of melatonin against necrosis-inducing DNA damage in hepatocytes of streptozotocin (STZ)-induced diabetic rats. Daily administration of melatonin (0.2 mg/kg) was initiated 3 days before diabetes induction and maintained for 4 weeks. Melatonin-treated diabetic rats exhibited improved markers of liver injury (P < 0.05), alkaline phosphatase, and alanine and aspartate aminotransferases. Melatonin prevented the diabetes-related morphological deterioration of hepatocytes, DNA damage (P < 0.05), and hepatocellular necrosis. The improvement was due to containment of the pronecrotic oxygen radical load, observed as inhibition (P < 0.05) of the diabetes-induced rise in lipid peroxidation and hydrogen peroxide increase in the liver. This was accompanied by improved necrotic markers of cellular damage: a significant reduction in cleavage of the DNA repair enzyme poly(ADP-ribose) polymerase 1 (PARP-1) into necrotic 55- and 62-kDa fragments, and inhibition of nucleus-to-cytoplasm translocation and accumulation in the serum of the high-mobility group box 1 (HMGB1) protein. We conclude that melatonin is hepatoprotective in diabetes. It reduces extensive DNA damage and resulting necrotic processes. Melatonin application could thus present a viable therapeutic option in the management of diabetes-induced liver injury


Subject(s)
Animals , Rats , Melatonin/pharmacokinetics , Apoptosis , Diabetes Mellitus, Experimental/physiopathology , Chemical and Drug Induced Liver Injury/drug therapy , Hepatoprotector Drugs , Mice, Inbred NOD , Streptozocin/pharmacokinetics , Protective Agents/pharmacokinetics , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...