Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ISME Commun ; 3(1): 84, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598259

ABSTRACT

Research on marine microbial communities is growing, but studies are hard to compare because of variation in seawater sampling protocols. To help researchers in the inter-comparison of studies that use different seawater sampling methodologies, as well as to help them design future sampling campaigns, we developed the EuroMarine Open Science Exploration initiative (EMOSE). Within the EMOSE framework, we sampled thousands of liters of seawater from a single station in the NW Mediterranean Sea (Service d'Observation du Laboratoire Arago [SOLA], Banyuls-sur-Mer), during one single day. The resulting dataset includes multiple seawater processing approaches, encompassing different material-type kinds of filters (cartridge membrane and flat membrane), three different size fractionations (>0.22 µm, 0.22-3 µm, 3-20 µm and >20 µm), and a number of different seawater volumes ranging from 1 L up to 1000 L. We show that the volume of seawater that is filtered does not have a significant effect on prokaryotic and protist diversity, independently of the sequencing strategy. However, there was a clear difference in alpha and beta diversity between size fractions and between these and "whole water" (with no pre-fractionation). Overall, we recommend care when merging data from datasets that use filters of different pore size, but we consider that the type of filter and volume should not act as confounding variables for the tested sequencing strategies. To the best of our knowledge, this is the first time a publicly available dataset effectively allows for the clarification of the impact of marine microbiome methodological options across a wide range of protocols, including large-scale variations in sampled volume.

2.
F1000Res ; 3: 271, 2014.
Article in English | MEDLINE | ID: mdl-25653839

ABSTRACT

One of the foundations of the scientific method is to be able to reproduce experiments and corroborate the results of research that has been done before. However, with the increasing complexities of new technologies and techniques, coupled with the specialisation of experiments, reproducing research findings has become a growing challenge. Clearly, scientific methods must be conveyed succinctly, and with clarity and rigour, in order for research to be reproducible. Here, we propose steps to help increase the transparency of the scientific method and the reproducibility of research results: specifically, we introduce a peer-review oath and accompanying manifesto. These have been designed to offer guidelines to enable reviewers (with the minimum friction or bias) to follow and apply open science principles, and support the ideas of transparency, reproducibility and ultimately greater societal impact. Introducing the oath and manifesto at the stage of peer review will help to check that the research being published includes everything that other researchers would need to successfully repeat the work. Peer review is the lynchpin of the publishing system: encouraging the community to consciously (and conscientiously) uphold these principles should help to improve published papers, increase confidence in the reproducibility of the work and, ultimately, provide strategic benefits to authors and their institutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...