Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 133(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36656645

ABSTRACT

Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.


Subject(s)
Alcoholism , Phosphodiesterase 4 Inhibitors , Psoriasis , Humans , Mice , Animals , Thalidomide/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Psoriasis/drug therapy , Ethanol , Alcohol Drinking/genetics
2.
Neuroscience ; 509: 173-186, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36395916

ABSTRACT

Understanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines. Within WT rats, intra-NAc AP-1 inhibition caused a significant decrease in overnight running distance in comparison to control rats (p = 0.009). Transcriptomic and bioinformatic analysis in WT rats identified involvement of gene products that regulate cellular proliferation and development, which were cellular processes regulated by AP-1. In contrast to above decreased WT distances, intra-NAc AP-1 inhibition in LVR rats increased nightly running distance in comparison to LVR control rats (p = 0.0008). Further analysis identified gene products that are associated with regulating intracellular Ca2+ homeostasis, calcium ion binding and neuronal excitability. In short, our study aims to gain a comprehensive understanding of transcriptional profile that was due to AP-1 inhibition in NAc, in which it could not only enhance the knowledge regarding molecular regulatory loops within NAc for modulating voluntary running behavior, but also provide further insights into molecular targets for future investigations.


Subject(s)
Motor Activity , Transcription Factor AP-1 , Rats , Female , Animals , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Transcription Factor AP-1/pharmacology , Motor Activity/physiology , Transcriptome , Nucleus Accumbens/metabolism , Gene Expression Profiling
3.
Front Behav Neurosci ; 16: 821859, 2022.
Article in English | MEDLINE | ID: mdl-35645743

ABSTRACT

The High Drinking in the Dark (HDID-1) line of mice has been selectively bred for achieving high blood alcohol levels (BALs) in the Drinking in the Dark task, a model of binge-like drinking. Recently, we determined that glucocorticoid receptor (GR) antagonism with either mifepristone or CORT113176 (a selective GR antagonist) reduced binge-like ethanol intake in the HDID-1 mice, but not in their founder line, HS/NPT. Here, we examined whether the selection process may have altered glucocorticoid functioning by measuring (1) plasma corticosterone levels and (2) expression of the genes encoding GR (Nr3c1) and two of its chaperone proteins FKBP51 and FKBP52 (Fkbp5 and Fkbp4) in the brains (nucleus accumbens, NAc) of HDID-1 and HS/NPT mice. We observed no genotype differences in baseline circulating corticosterone levels. However, HDID-1 mice exhibited a greater stimulated peak corticosterone response to an IP injection (of either ethanol or saline) relative to their founder line. We further observed reduced basal expression of Fkbp4 and Nr3c1 in the NAc of HDID-1 mice relative to HS/NPT mice. Finally, HDID-1 mice exhibited reduced Fkbp5 expression in the NAc relative to HS/NPT mice following an injection of 2 g/kg ethanol. Together, these data suggest that selective breeding for high BALs may have altered stress signaling in the HDID-1 mice, which may contribute to the observed selective efficacy of GR antagonism in reducing binge-like ethanol intake in HDID-1, but not HS/NPT mice. These data have important implications for the role that stress signaling plays in the genetic risk for binge drinking.

4.
Neuropharmacology ; 203: 108874, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34748860

ABSTRACT

RATIONALE: The nucleus accumbens (NAc) is important for regulating a number of behaviors, including alcohol and substance use. We previously found that chemogenetically manipulating neuronal activity in the NAc core regulates binge-like drinking in mice. The central amygdala (CeA) is also an important regulator of alcohol drinking, and projects to the NAc core. We tested whether neuronal projections from the CeA to the NAc core, or neuropeptides released by the CeA in the NAc core, could regulate binge drinking. METHODS: For experiment 1, mice were administered AAV2 Cre-GFP into the NAc core and a Cre-inducible DREADD [AAV2 DIO- hM3Dq, -hM4Di, or -mCherry control] into the CeA. We tested the effects of altering CeA to NAc core activity on binge-like ethanol intake (via "Drinking in the Dark", DID). For experiment 2, we bilaterally microinfused corticotropin releasing factor (CRF), neuropeptide Y (NPY), or somatostatin (SST) into the NAc core prior to DID. For experiment 3, we tested whether intra-NAc CRF antagonism prevented reductions in drinking induced by CNO/hM3Dq stimulation of CeA->NAc projections. RESULTS: Chemogenetically increasing activity in neurons projecting from the CeA to NAc core decreased binge-like ethanol drinking (p < 0.01). Intra-NAc core CRF mimicked chemogenetic stimulation of this pathway (p < 0.05). Binge-like drinking was unaffected by the doses of NPY and SST tested. Lastly, we found that intra-NAc CRF antagonism prevented reductions in drinking induced by chemogenetic stimulation of CeA->NAc projections. These findings demonstrate that neurons projecting from the CeA to NAc core that release CRF are capable of regulating binge-like drinking in mice.


Subject(s)
Binge Drinking/metabolism , Central Amygdaloid Nucleus/metabolism , Corticotropin-Releasing Hormone/metabolism , Nerve Net/metabolism , Nucleus Accumbens/metabolism , Animals , Central Amygdaloid Nucleus/drug effects , Corticotropin-Releasing Hormone/administration & dosage , Female , Male , Mice , Mice, Inbred C57BL , Microinjections/methods , Nerve Net/drug effects , Neuropeptide Y/administration & dosage , Nucleus Accumbens/drug effects , Piperazines/administration & dosage
5.
J Funct Morphol Kinesiol ; 8(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36648898

ABSTRACT

Physical activity (PA) is a non-invasive, cost-effective means of reducing chronic disease. Most US citizens fail to meet PA guidelines, and individuals experiencing chronic stress are less likely to be physically active. To better understand the barriers to maintaining active lifestyles, we sought to determine the extent to which short- versus long-term PA increases stress- and aversion-related markers in wild-type (WT) and low voluntary running (LVR) rats, a unique genetic model of low physical activity motivation. Here, we tested the effects of 1 and 4 weeks of voluntary wheel-running on physiological, behavioral, and molecular measures of stress and Hypothalamic Pituitary Adrenal (HPA)-axis responsiveness (corticosterone levels, adrenal wet weights, and fecal boli counts). We further determined measures of aversion-related signaling (kappa opioid receptor, dynorphin, and corticotropin releasing hormone mRNA expression) in the basolateral amygdala (BLA), a brain region well characterized for its role in anxiety and aversion. Compared to sedentary values, 1, but not 4 weeks of voluntary wheel-running increased adrenal wet weights and plasma corticosterone levels, suggesting that HPA responsiveness normalizes following long-term PA. BLA mRNA expression of prodynorphin (Pdyn) was significantly elevated in WT and LVR rats following 1 week of wheel-running compared to sedentary levels, suggesting that aversion-related signaling is elevated following short- but not long-term wheel-running. In all, it appears that the stress effects of acute PA may increase molecular markers associated with aversion in the BLA, and that LVR rats may be more sensitive to these effects, providing a potential neural mechanism for their low PA motivation.

6.
Brain Sci ; 11(2)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557285

ABSTRACT

Alcohol use disorder (AUD) is a devastating psychiatric disorder that has significant wide-reaching effects on individuals and society. Selectively bred mouse lines are an effective means of exploring the genetic and neuronal mechanisms underlying AUD and such studies are translationally important for identifying treatment options. Here, we report on behavioral characterization of two replicate lines of mice that drink to intoxication, the High Drinking in the Dark (HDID)-1 and -2 mice, which have been selectively bred (20+ generations) for the primary phenotype of reaching high blood alcohol levels (BALs) during the drinking in the dark (DID) task, a binge-like drinking assay. Along with their genetically heterogenous progenitor line, Hs/Npt, we tested these mice on: DID and drinking in the light (DIL); temporal drinking patterns; ethanol sensitivity, through loss of righting reflex (LORR); and operant self-administration, including fixed ratio (FR1), fixed ratio 3:1 (FR3), extinction/reinstatement, and progressive ratio (PR). All mice consumed more ethanol during the dark than the light and both HDID lines consumed more ethanol than Hs/Npt during DIL and DID. In the dark, we found that the HDID lines achieved high blood alcohol levels early into a drinking session, suggesting that they exhibit front loading like drinking behavior in the absence of the chronicity usually required for such behavior. Surprisingly, HDID-1 (female and male) and HDID-2 (male) mice were more sensitive to the intoxicating effects of ethanol during the dark (as determined by LORR), while Hs/Npt (female and male) and HDID-2 (female) mice appeared less sensitive. We observed lower HDID-1 ethanol intake compared to either HDID-2 or Hs/Npt during operant ethanol self-administration. There were no genotype differences for either progressive ratio responding, or cue-induced ethanol reinstatement, though the latter is complicated by a lack of extinguished responding behavior. Taken together, these findings suggest that genes affecting one AUD-related behavior do not necessarily affect other AUD-related behaviors. Moreover, these findings highlight that alcohol-related behaviors can also differ between lines selectively bred for the same phenotype, and even between sexes within those same line.

7.
Neurosci Insights ; 15: 2633105520975412, 2020.
Article in English | MEDLINE | ID: mdl-33294845

ABSTRACT

High Drinking in the Dark (HDID-1) mice represent a unique genetic risk model of binge-like drinking and a novel means of screening potential pharmacotherapies to treat alcohol use disorders (AUDs). We tested the effects of tacrolimus (0, 0.5, 1, and 2 mg/kg), sirolimus (0, 5, 10, and 20 mg/kg), palmitoylethanolamide (PEA; 0, 75, 150, and 225 mg/kg), and secukinumab (0, 5, 20, and 60 mg/kg) on binge-like ethanol intake (2-day, "Drinking in the Dark" [DID]) and blood alcohol levels (BALs) in HDID-1 mice. Tacrolimus reduced ethanol intake and BALs. Tacrolimus had no effect on water intake, but reduced saccharin intake. There was no effect of sirolimus, PEA, or secukinumab on ethanol intake or BALs. These results compare and contrast with previous work addressing these compounds or their targeted mechanisms of action on ethanol drinking, highlighting the importance of screening a wide range of models and genotypes to inform the role of neuroimmune signaling in AUDs.

8.
J Neurosci Res ; 98(11): 2302-2316, 2020 11.
Article in English | MEDLINE | ID: mdl-32725625

ABSTRACT

Given the integral role of nucleus accumbens (NAc) cAMP response element binding protein (CREB) activity in motivational processes, the goal of the current study was to determine whether blunting chronic NAc CREB activity could rescue the low physical activity motivation of female, low voluntary running (LVR) rats. NAc CREB phosphorylation is elevated in these rats, a state previously attributed to deficits in reward valuation. It was recently shown that overexpression of the upstream CREB inhibitor, protein kinase inhibitor alpha (PKIα), increased LVR nightly running by ~threefold. Therefore, the current study addresses the extent to which NAc CREB attenuation influences female LVR and wild-type (WT) wheel-running behavior. Inducible reductions in NAc neuronal activity using Gi-coupled hM4Di DREADDs increased running behavior in LVR, but not in WT, rats. Similarly, site-directed pharmacological inhibition of NAc CREB activity significantly increased LVR nightly running distance and time by ~twofold, with no effect in WT rats. Finally, environmentally enriched LVR rats exhibit higher levels of running compared to socially isolated rats in what appeared to be a CREB-related manner. Considering the positive outcomes of upstream CREB modulation and environmental enrichment on LVR behavior, we believe that blunting NAc CREB activity has the neuromolecular potential to partially reverse low physical activity motivation, as exemplified by the LVR model. The positive physical activity outcome of early life enrichment adds translatable value to human childhood enrichment and highlights its importance on motivational processes later in life.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Nucleus Accumbens/physiology , Running/psychology , Animals , Benzoates/pharmacology , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/drug effects , Conditioning, Operant , Cyclic AMP Response Element-Binding Protein/antagonists & inhibitors , Environment , Female , Motivation , Motor Activity , Nitrobenzenes/pharmacology , Physical Conditioning, Animal/psychology , Pyrazolones/pharmacology , Rats , Rats, Wistar , Retinoids/pharmacology , Social Isolation
9.
Behav Brain Res ; 379: 112341, 2020 02 03.
Article in English | MEDLINE | ID: mdl-31711895

ABSTRACT

Estrogens are believed to enhance rodent voluntary wheel-running through medial preoptic (mPOA) estrogen receptor α (ERα) signaling, with little role attributed to estrogen receptor ß (ERß). Systemic ERß activation has been shown to mitigate ERα driven increases in wheel-running. Therefore, the present goal was to determine whether ERß signaling in the mPOA plays a similar modulatory role over ERα. We utilized outbred wild-type (WT) and rats selectively bred for low voluntary running (LVR) behavior to address whether mPOA ERß signaling blunts ERα driven wheel-running behavior and immediate-early gene (Fos, Zif268, and Homer1) mRNA induction. Further, we addressed baseline mPOA mRNA expressions and circulating 17ß-estradiol levels between female WT and LVR rats. Following ovariectomy, WT rats reduced running behavior ∼40 %, with no effect in LVR rats. Intra-medial preoptic injection of the ERα-agonist propylpyrazoletriol (PPT) increased wheel-running ∼3.5-fold in WT rats, while injections of the ERß-agonist diarylpropionitrile (DPN) or a combination of the two agonists had no effect. Similarly, ERα-agonism (PPT) increased Fos and Homer1 induction ∼3-fold in WT and LVR isolated mPOA neurons, with no effect of the ERß-agonist DPN alone or in combination with PPT, suggesting medial-preoptic ERß activity may blunt ERα signaling. LVR rats exhibited higher mPOA mRNA expressions of Esr1, Esr2 and Cyp19a1, lower normalized uterine wet weights and lower 17ß-estradiol plasma levels compared to WT, suggesting their low running may be due to low circulating estrogen levels. Collectively, these findings highlight mPOA ERß as a potential neuro-molecular modulator of the estrogenic control of wheel-running behavior.


Subject(s)
Behavior, Animal/physiology , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Motor Activity/physiology , Preoptic Area/metabolism , Running/physiology , Animals , Female , Ovariectomy , Rats , Rats, Wistar , Selective Breeding , Signal Transduction/physiology
10.
J Appl Physiol (1985) ; 127(1): 254-263, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31120807

ABSTRACT

Effective treatments preventing brain neuroinflammatory diseases are lacking. Resistance-exercise training (RT) ameliorates mild cognitive impairment (MCI), a forerunner to neuroinflammatory diseases. However, few studies have addressed the molecular basis by which RT abates MCI. Thus experiments were performed to identify some molecular changes occurring in response to RT in young, female Wistar rats. To induce MCI, intraventricular lipopolysaccharide (LPS) injections were used to increase dentate gyrus inflammation, reflected by significantly increased TNF-α (~400%) and IL-1ß (~1,500%) mRNA (P < 0.0001) after 6 wk. Five days after LPS injections, half of LPS-injected rats performed RT by ladder climbing for 6 wk, 3 days/wk, whereas half remained without ladders. RT for 6 wk increased lean body mass percentage (P < 0.05), individual muscle masses (gastrocnemius and tibialis anterior) (P < 0.05), and maximum lifting capacity (P < 0.001). The RT group, compared with sedentary controls, had 1) ameliorated spatial learning deficits (P < 0.05), 2) increased dentate gyrus phosphorylation of IGF-1R, protein kinase B, and GSK-3ß proteins (P < 0.05), components of downstream IGF-1 signaling, and 3) increased dentate gyrus synaptic plasticity marker synapsin protein (P < 0.05). Two follow-up experiments (without LPS) characterized dentate gyrus signaling during short-term RT. Twenty-four hours following the third workout in a 1-wk training duration, phosphorylation of ERK1/2 and GSK-3ß proteins, as well as proliferation marker protein, PCNA, were significantly increased (P < 0.05). Similar changes did not occur in a separate group of rats following a single RT workout. Taken together, these data indicate that RT ameliorates LPS-induced MCI after RT, possibly mediated by increased IGF-1 signaling pathway components within the dentate gyrus. NEW & NOTEWORTHY The data suggest that resistance-exercise training restores cognitive deficits induced by lipopolysaccharides and can activate associated IGF-1 signaling in the dentate gyrus. Our data show, for the first time, that as few as three resistance-exercise workouts (spread over 1 wk) can activate IGF-1 downstream signaling and increase proliferation marker PCNA in the dentate gyrus.


Subject(s)
Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/physiopathology , Dentate Gyrus/physiopathology , Lipopolysaccharides/pharmacology , Physical Conditioning, Animal/physiology , Animals , Cognitive Dysfunction/metabolism , Dentate Gyrus/metabolism , Female , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Insulin-Like Growth Factor I/metabolism , Interleukin-1beta/metabolism , MAP Kinase Signaling System/physiology , Neuronal Plasticity/physiology , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Resistance Training/instrumentation , Signal Transduction/physiology , Tumor Necrosis Factor-alpha/metabolism
11.
Mol Neurobiol ; 56(3): 1782-1797, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29931508

ABSTRACT

A gene was sought that could reverse low voluntary running distances in a model of low voluntary wheel-running behavior. In order to confirm the low motivation to wheel-run in our model does not result from defects in reward valuation, we employed sucrose preference and conditioned place preference for voluntary wheel-access. We observed no differences between our model and wild-type rats regarding the aforementioned behavioral testing. Instead, low voluntary runners seemed to require less running to obtain similar rewards for low voluntary running levels compared to wild-type rats. Previous work in our lab identified protein kinase inhibitor alpha as being lower in low voluntary running than wild-type rats. Next, nucleus accumbens injections of an adenoviral-associated virus that overexpressed the protein kinase inhibitor alpha gene increased running distance in low voluntary running, but not wild-type rats. Endogenous mRNA levels for protein kinase inhibitor alpha, dopamine receptor D1, dopamine receptor D2, and Fos were all only lower in wild-type rats following overexpression compared to low voluntary runners, suggesting a potential molecular and behavioral resistance in wild-type rats. Utilizing a nucleus accumbens preparation, three intermediate early gene mRNAs increased in low voluntary running slices after dopamine receptor agonist SKF-38393 exposure, while wild-type had no response. In summary, the results suggest that protein kinase inhibitor alpha is a promising gene candidate to partially rescue physical activity in the polygenic model of low voluntary running. Importantly, there were divergent molecular responses to protein kinase inhibitor alpha overexpression in low voluntary runners compared to wild-type rats.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Behavior, Animal/physiology , Corpus Striatum/metabolism , Motor Activity/physiology , Physical Conditioning, Animal/physiology , Running/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Female , PC12 Cells , Rats , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Reward
12.
Mol Neurobiol ; 56(3): 1798-1799, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30218401

ABSTRACT

The original version of this article unfortunately contained mistake in Table 2 to where two directionality arrows were inverted.

13.
Brain Res ; 1698: 187-194, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30118717

ABSTRACT

The habenula is a small, diencephalic structure comprised of distinct subnuclei which receives inputs from the limbic forebrain and sends projections to various regions in the midbrain, making this region well positioned to influence reward and motivation. Genetic ablation of the dorsal medial habenula is known to decrease voluntary wheel-running in mice. However, the extent to which the medial habenula (MHb) mediates wheel-running motivation in the context of high or low motivation for voluntary physical activity remains to be determined. In so, we utilized 5-week-old female rats selectively bred to voluntarily run high (HVR) or low (LVR) distances in order to determine if inherent differences in medial habenula maturation accompany inherent differences in wheel-running motivation. We report a significantly higher expression of genes associated with MHb development (Brn3a, Nurr1, Tac1, and Kcnip) in HVR versus LVR rats. Furthermore, there was a positive correlation between Brn3a and Nurr1 expression and run distance in HVR, but not LVR rats. Similarly, NeuN and Synapsin 1, markers of neuronal maturation, were higher in HVR compared to LVR rats. Lastly, dendritic density was determined to be higher in the MHb of HVR versus LVR rats, while LVR rats showed a higher percentage of thin spines, suggesting a higher prevalence of immature dendrites in LVR rats. Taken together, the above findings highlight the involvement of MHb in driving the motivation to be physically active. Given pandemic levels of global physical inactivity, the role of the MHb offers a novel potential to improve our global health.


Subject(s)
Habenula/growth & development , Motivation/physiology , Motor Activity/physiology , Animals , Female , Habenula/metabolism , Neurons/metabolism , Nucleus Accumbens/metabolism , Physical Conditioning, Animal , Rats , Rats, Wistar , Reward , Running/physiology , Volition/physiology
14.
Neurosci Lett ; 671: 50-55, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29425730

ABSTRACT

The extent to which N-Methyl-d-aspartate (NMDA) receptors facilitate the motivation to voluntarily wheel-run in rodents has yet to be determined. In so, we utilized female Wistar rats selectively bred to voluntarily run high (HVR) and low (LVR) nightly distances in order to examine if endogenous differences in nucleus accumbens (NAc) NMDA receptor expression and function underlies the propensity for high or low motivation to voluntarily wheel-run. 12-14 week old HVR and LVR females were used to examine: 1.) NAc mRNA and protein expression of NMDA subunits NR1, NR2A and NR2B; 2.) NMDA current responses in isolated medium spiny neurons (MSNs) and 3.) NMDA-evoked dopamine release in an ex vivo preparation of NAc punches. Expectedly, there was a large divergence in nightly running distance and time between HVR and LVR rats. We saw a significantly higher mRNA and protein expression of NR1 in HVR compared to LVR rats, while seeing no difference in the expression of NR2A or NR2B. There was a greater current response to a 500 ms application of 300 µM of NMDA in medium-spiny neurons isolated from the NAc HVR compared to LVR animals. On average, NMDA-evoked punches (50 µM of NMDA for 10 min) taken from HVR rats retained ∼54% of the dopamine content compared to their bilateral non-evoked sides, while evoked punches from LVR animals showed no statistical decrease in dopamine content compared to their non-evoked sides. Collectively, these data suggest a potential link between NAc NR1 subunit expression as well as NMDA function and the predisposition for nightly voluntary running behavior in rats. In light of the epidemic rise in physical inactivity, these findings have the potential to explain a neuro-molecular mechanism that regulates the motivation to be physically active.


Subject(s)
Motor Activity/physiology , Nucleus Accumbens/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Running/physiology , Animals , Dopamine/metabolism , Female , Gene Expression , N-Methylaspartate/pharmacology , Neurons/drug effects , Neurons/metabolism , Nucleus Accumbens/drug effects , Rats , Rats, Wistar
15.
FASEB J ; 31(12): 5371-5383, 2017 12.
Article in English | MEDLINE | ID: mdl-28794174

ABSTRACT

Prenatal overnutrition affects development into adulthood and influences risk of obesity. We assessed the transgenerational effect of maternal Western diet (WD) consumption on offspring physical activity. Voluntary wheel running was increased in juvenile (4-7 wk of age), but decreased in adult (16-19 wk of age), F1 female WD offspring In contrast, no wheel-running differences in F1 male offspring were observed. Increased wheel running in juvenile female WD offspring was associated with up-regulated dopamine receptor (DRD)-1 and -2 in the nucleus accumbens (NAc) and with down-regulated Lepr in the ventral tegmental area (VTA). Conversely, decreased wheel running by adult female WD offspring was associated with down-regulated DRD1 in the NAc and with up-regulated Lepr in the VTA. Body fat, leptin, and insulin were increased in male, but not in female, F1 WD offspring. Recombinant virus (rAAV) leptin antagonism in the VTA decreased wheel running in standard diet but not in WD F1 female offspring. Analysis of F2 offspring found no differences in wheel running or adiposity in male or female offspring, suggesting that changes in the F1 generation were related to in utero somatic reprogramming. Our findings indicate prenatal WD exposure leads to age-specific changes in voluntary physical activity in female offspring that are differentially influenced by VTA leptin antagonism.-Ruegsegger, G. N., Grigsby, K. B., Kelty, T. J., Zidon, T. M., Childs, T. E., Vieira-Potter, V. J., Klinkebiel, D. L., Matheny, M., Scarpace, P. J., Booth, F. W. Maternal Western diet age-specifically alters female offspring voluntary physical activity and dopamine- and leptin-related gene expression.


Subject(s)
Diet, Western , Motor Activity/drug effects , Prenatal Nutritional Physiological Phenomena , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Leptin/metabolism , Animals , Body Composition , Down-Regulation , Female , Gene Expression Regulation/drug effects , Leptin/genetics , Leptin/metabolism , Male , Motor Activity/physiology , Nucleus Accumbens/metabolism , Pregnancy , Rats , Receptors, Dopamine D1/genetics , Receptors, Dopamine D2/genetics , Receptors, Leptin/genetics , Sex Factors , Tegmentum Mesencephali/metabolism , Up-Regulation
16.
Exp Physiol ; 102(11): 1474-1485, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28786140

ABSTRACT

NEW FINDINGS: What is the central question of this study? We investigated whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) could prevent acute increases in body fat and changes in omental and subcutaneous adipose tissue following the sudden transition from physical activity to physical inactivity. What is the main finding and its importance? AICAR prevented fat gains following the transition from physical activity to inactivity to levels comparable to rats that remained physically active. AICAR and continuous physical activity produced depot-specific changes in cyclin A1 mRNA and protein that were associated with the prevention of fat gain. These findings suggest that targeting AMP-activated protein kinase signalling could oppose rapid adipose mass growth. The transition from physical activity to inactivity is associated with drastic increases in 'catch-up' fat that in turn foster the development of many obesity-associated maladies. We tested whether 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) treatment would prevent gains in body fat following the sudden transition from a physically active state to an inactive state by locking a voluntary running wheel. Male Wistar rats were either sedentary (SED) or given wheel access for 4 weeks, at which time rats with wheels continued running (RUN), had their wheel locked (WL) or had WL with daily AICAR injection (WL + AICAR) for 1 week. RUN and WL + AICAR prevented gains in body fat compared with SED and WL (P < 0.001). Cyclin A1 mRNA, a marker of cell proliferation, was decreased in omental, but not subcutaneous adipose tissue, in RUN and WL + AICAR compared with SED and WL groups (P < 0.05). Both cyclin A1 mRNA and protein were positively associated with gains in fat mass (P < 0.05). Cyclin A1 mRNA in omental, but not subcutaneous, adipose tissue was negatively correlated with p-AMPK levels (P < 0.05). Differences in fat gain and omental mRNA and protein levels were independent of changes in food intake and in differences in select hypothalamic mRNAs. These findings suggest that AICAR treatment prevents acute gains in adipose tissue following physical inactivity to levels of rats that continuously run, and that together, continuous physical activity and AICAR could, at least initially in these conditions, exert similar inhibitory effects on adipogenesis in a depot-specific manner.


Subject(s)
Abdominal Fat/drug effects , Adipogenesis/drug effects , Adiposity/drug effects , Aminoimidazole Carboxamide/analogs & derivatives , Anti-Obesity Agents/pharmacology , Physical Conditioning, Animal/methods , Ribonucleotides/pharmacology , Sedentary Behavior , Subcutaneous Fat/drug effects , Weight Gain/drug effects , AMP-Activated Protein Kinases/metabolism , Abdominal Fat/metabolism , Aminoimidazole Carboxamide/pharmacology , Animals , Cyclin A1/genetics , Cyclin A1/metabolism , Enzyme Activation , Enzyme Activators/pharmacology , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Phosphorylation , Physical Exertion , Rats, Wistar , Running , Subcutaneous Fat/metabolism , Time Factors , Volition
17.
J Physiol ; 595(1): 363-384, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27461471

ABSTRACT

KEY POINTS: Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases. The nucleus accumbens (the pleasure and reward 'hub' in the brain) influences wheel running behaviour in rodents. RNA-sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age-related reductions in wheel running. Upon completion of follow-up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age-related changes in voluntary running. Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running. The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age-dependent reductions in the motivation to be physically active. ABSTRACT: Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA-sequencing was used to interrogate transcriptomic changes between 8- and 14-week-old wheel running rats, and select transcripts were later analysed by quantitative RT-PCR in age-matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP-mediated signalling, dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were greater in 8- vs. 14-week-old rats. In depth analysis of these networks showed significant (∼20-30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin-dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14- vs. 8-week-old sedentary rats (P = 0.03). Intriguingly, intra-NAc injection of the Cdk5 inhibitor roscovitine, dose-dependently decreased wheel running. Collectively, these experiments suggest that an age-dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age-related declines in voluntary running behaviour.


Subject(s)
Aging/physiology , Cyclin-Dependent Kinase 5/physiology , Motivation/physiology , Motor Activity/physiology , Nucleus Accumbens/physiology , Animals , Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/genetics , Female , Neuronal Plasticity/physiology , Purines/pharmacology , Rats, Wistar , Roscovitine , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...