Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 16(8): e1008836, 2020 08.
Article in English | MEDLINE | ID: mdl-32866212

ABSTRACT

Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA83), binds to cell-surface receptors and is cleaved by furin into an evolutionary-conserved PA20 and a pore-forming PA63 subunits. We show that PA20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA83 loop known to be cleaved by furin to release PA20 from PA63 is, in part, responsible for the PA20-mediated protection. We found that PA20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA20-mediated protection of infected flies. This effect of PA20 on innate immunity may also exist in mammals: we show that PA20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens.


Subject(s)
Anthrax Vaccines/administration & dosage , Anthrax/drug therapy , Antigens, Bacterial/administration & dosage , Bacillus anthracis/drug effects , Bacterial Toxins/administration & dosage , Drosophila melanogaster/growth & development , Mosquito Vectors/microbiology , Protective Agents/administration & dosage , Animals , Anthrax/microbiology , Culex , Drosophila melanogaster/immunology , Drosophila melanogaster/microbiology , Female , Male
2.
Virol J ; 17(1): 43, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234060

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is a major human pathogen and member of the Flavivirus genus. Previous studies have identified neutralizing antibodies from Zika patients that bind to quaternary epitopes across neighboring envelope (E) proteins, called E dimer epitopes (EDE). An asparagine-linked glycan on the "glycan loop" (GL) of the ZIKV envelope protein protects the functionally important "fusion loop" on the opposite E subunit in the dimer, and EDE antibodies have been shown to bind to both of these loops. Human EDE antibodies have been divided into two subclasses based on how they bind to the glycan loop region: EDE1 antibodies do not require glycosylation for binding, while EDE2 antibodies strongly rely on the glycan for binding. METHODS: ZIKV GL was expressed on tobacco mosaic virus nanoparticles. Mice were immunized with GL or full-length monomeric E and the immune response was analyzed by testing the ability of sera and monoclonal antibodies to bind to GL and to neutralize ZIKV in in vitro cellular assay. RESULTS: We report here the existence of ZIKV moderately neutralizing antibodies that bind to E monomers through epitopes that include the glycan loop. We show that sera from human Zika patients contain antibodies capable of binding to the unglycosylated glycan loop in the absence of the rest of the envelope protein. Furthermore, mice were inoculated with recombinant E monomers and produced neutralizing antibodies that either recognize unglycosylated glycan loop or require glycan for their binding to monomeric E. We demonstrate that both types of antibodies neutralize ZIKV to some extent in a cellular virus neutralization assay. CONCLUSIONS: Analogous to the existing EDE antibody nomenclature, we propose a new classification for antibodies that bind to E monomer epitopes (EME): EME1 and EME2 for those that do not require and those that do require glycan for binding to E, respectively.


Subject(s)
Antibodies, Viral/immunology , Polysaccharides/immunology , Viral Envelope Proteins/immunology , Zika Virus/chemistry , Zika Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Binding Sites, Antibody , Epitopes/immunology , Female , Glycosylation , Humans , Immunogenicity, Vaccine , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Neutralization Tests , Polysaccharides/genetics , Tobacco Mosaic Virus/genetics , Zika Virus Infection/virology
3.
Vaccine ; 33(48): 6745-51, 2015 Nov 27.
Article in English | MEDLINE | ID: mdl-26514421

ABSTRACT

The current anthrax vaccine requires improvements for rapidly invoking longer-lasting neutralizing antibody responses with fewer doses from a well-defined formulation. Designing antigens that target neutralizing antibody epitopes of anthrax protective antigen, a component of anthrax toxin, may offer a solution for achieving a vaccine that can induce strong and long lasting antibody responses with fewer boosters. Here we report implementation of a strategy for developing epitope focused virus nanoparticle vaccines against anthrax by using immunogenic virus particles to present peptides derived from anthrax toxin previously identified in (1) neutralizing antibody epitope mapping studies, (2) toxin crystal structure analyses to identify functional regions, and (3) toxin mutational analyses. We successfully expressed two of three peptide epitopes from anthrax toxin that, in previous reports, bound antibodies that were partially neutralizing against toxin activity, discovered cross-reactivity between vaccine constructs and toxin specific antibodies raised in goats against native toxin and showed that antibodies induced by our vaccine constructs also cross-react with native toxin. While protection against intoxication in cellular and animal studies were not as effective as in previous studies, partial toxin neutralization was observed in animals, demonstrating the feasibility of using plant-virus nanoparticles as a platform for epitope defined anthrax vaccines.


Subject(s)
Anthrax Vaccines/immunology , Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Drug Carriers , Epitopes/immunology , Tobacco Mosaic Virus/genetics , Animals , Anthrax Vaccines/administration & dosage , Anthrax Vaccines/genetics , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Antigens, Bacterial/genetics , Bacterial Toxins/genetics , Cross Reactions , Epitopes/genetics , Female , Genetic Vectors , Goats , Mice, Inbred C57BL , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...