Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 46(21): 5425-5428, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34724492

ABSTRACT

Surface-normal electroabsorption modulators (SNEAMs) are appealing for short-reach communication systems because of their outstanding properties, such as ultrawide bandwidth and polarization-insensitive response; however, due to their small active volumes, large voltage swings are typically required to obtain the best performance. Here we propose and demonstrate a novel, to the best of our knowledge, design that dramatically reduces the voltage needed by SNEAMs and significantly increases their extinction ratio. By shrinking the multiple quantum well stack of SNEAMs to the minimum and by optimizing their reflectivity with dielectric coatings of suitable refractive index and thickness, we obtain modulators that require drive voltages of only 1-2Vpp. We show that these novel devices largely outperform conventional SNEAMs.

2.
Opt Lett ; 45(16): 4472-4475, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32796986

ABSTRACT

Surface-normal electroabsorption modulators (SNEAMs) have unique electro-optic modulation properties; however, their behavior and performance at high light intensity is affected by thermal nonlinearities that take place in the modulator active volume. Here we show a novel, to the best of our knowledge, approach to make SNEAMs insensitive to optical power without the use of power-hungry heaters or feedback control systems. By passively compensating for the thermo-optic dependence of the SNEAM resonant cavity, we obtain an eight-fold reduction in the wavelength shift of the SNEAM response at 4 dBm of input power. Furthermore, we show no appreciable degradation in the SNEAM eye diagram at 25 Gbit/s, when the input power is increased up to 2 dBm, which is about four times higher than in conventional SNEAMs.

3.
Opt Lett ; 45(16): 4484-4487, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32797006

ABSTRACT

We report multi-level modulation in polarization-independent surface-normal electro-absorption modulators (SNEAMs). Four-level pulse amplitude modulation (PAM-4) at a line rate of 44 Gb/s is demonstrated on a fully packaged SNEAM with a 30 µm active area diameter and a 14 GHz electro-optic bandwidth. High-capacity PAM-4 transmission at 112 and 160 Gb/s is demonstrated on an unpackaged SNEAM chip, with a 15 µm active area diameter and ultrawide electro-optic bandwidth (≫65GHz). Fiber transmission is investigated for direct detection link lengths up to 23 km at 44 Gb/s and 2 km at 112 and 160 Gb/s, the highest multi-level modulation rates achieved on a SNEAM.

4.
Opt Lett ; 41(13): 3053-6, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367099

ABSTRACT

To support the use of integrated photonics in harsh environments, such as outer space, the hardness threshold to high-energy radiation must be established. Here, we investigate the effects of gamma (γ) rays, with energy in the MeV-range, on silicon photonic waveguides. By irradiation of high-quality factor amorphous silicon core resonators, we measure the impact of γ rays on the materials incorporated in our waveguide system, namely amorphous silicon, silicon dioxide, and polymer. While we show the robustness of amorphous silicon and silicon dioxide up to an absorbed dose of 15 Mrad, more than 100× higher than previous reports on crystalline silicon, polymer materials exhibit changes with doses as low as 1 Mrad.

5.
Nat Commun ; 6: 8182, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26359202

ABSTRACT

The surface of a material may exhibit physical phenomena that do not occur in the bulk of the material itself. For this reason, the behaviour of nanoscale devices is expected to be conditioned, or even dominated, by the nature of their surface. Here, we show that in silicon photonic nanowaveguides, massive surface carrier generation is induced by light travelling in the waveguide, because of natural surface-state absorption at the core/cladding interface. At the typical light intensity used in linear applications, this effect makes the surface of the waveguide behave as a metal-like frame. A twofold impact is observed on the waveguide performance: the surface electric conductivity dominates over that of bulk silicon and an additional optical absorption mechanism arises, that we named surface free-carrier absorption. These results, applying to generic semiconductor photonic technologies, unveil the real picture of optical nanowaveguides that needs to be considered in the design of any integrated optoelectronic device.

6.
Opt Lett ; 38(24): 5450-3, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24343014

ABSTRACT

We experimentally demonstrate the post-fabrication trimming of polymer-coated athermal silicon waveguides by exploiting the photosensitivity of As(2)S(3) chalcogenide glass to near-bandgap visible light. Our technique enables compensation of fabrication tolerances and modification of specific circuit functionalities after fabrication. Moreover, our athermal and trimmable waveguide technology is highly resilient to high optical power, and thus extremely appealing for nonlinear applications. Finally, it enables to fix the absolute wavelength and spectral response of silicon devices with extremely low dependence from temperature and power.

7.
Opt Express ; 20(14): 15807-17, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772270

ABSTRACT

A chalcogenide-assisted silicon waveguide is realized by depositing a thin layer of A(2)S(3) glass onto a conventional silicon on insulator optical waveguide. The photosensitivity of the chalcogenide is exploited to locally change the optical properties of the waveguide through exposure to visible light radiation. Waveguide trimming is experimentally demonstrated by permanently shifting the resonant wavelength of a microring resonator by 6.7 nm, corresponding to an effective index increase of 1.6·10(-2). Saturation effects, trimming range, velocity and temporal stability of the process are discussed in details. Results demonstrate that photo-induced treatments can be exploited for a post-fabrication compensation of fabrication tolerances, as well as to set and reconfigure the circuit response.

8.
Opt Lett ; 36(20): 4002-4, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-22002366

ABSTRACT

Selective exposure to visible light is used to permanently trim the resonant wavelengths of coupled ring-resonator filters and delay-lines realized on a chalcogenide As2S3 platform. Post-fabrication manipulation of the circuit parameters has proved an effective tool to compensate for technological tolerances, targeting demanding specifications in photonic integrated circuits with no need for always-on power-hungry actuators. The same approach opens a way to realize photonic integrated circuits that can be reconfigured after fabrication to fulfill specific applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...