Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 104(3): 278-88, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20087394

ABSTRACT

Nasonia (Hymenoptera: Pteromalidae) is a genus of parasitoid wasps, which is fast emerging as a model system for evolutionary, genetic, developmental and host-endosymbiont interaction studies. In this study, we report a new species, Nasonia oneida, distinguish its behavioral, genetic and morphological features, and characterize its pre-mating and post-mating isolation with the other Nasonia species. Phylogenetic analyses indicate that N. oneida is the sister species to Nasonia giraulti with its own uniquely distinct cuticular hydrocarbon profiles, behavioral characteristics and subtle morphological differences. An important characteristic of N. oneida is the strong mate discrimination shown by the females against all the other Nasonia species. A genetic analysis of this phenotype by interspecies hybridization indicates that this strong discriminating phenotype is recessive. A formal species description of N. oneida Raychoudhury & Desjardins is also provided.


Subject(s)
Behavior, Animal , Wasps/classification , Wasps/genetics , Animals , Evolution, Molecular , Female , Male , Phylogeny , Sexual Behavior, Animal , Wasps/anatomy & histology , Wasps/physiology
2.
Heredity (Edinb) ; 104(3): 318-26, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20087396

ABSTRACT

Here we report evidence of a mitochondrial-Wolbachia sweep in North American populations of the parasitoid wasp Nasonia vitripennis, a cosmopolitan species and emerging model organism for evolutionary and genetic studies. Analysis of the genetic variation of 89 N. vitripennis specimens from Europe and North America was performed using four types of genetic markers: a portion of the mitochondrial cytochrome oxidase I gene, nine polymorphic nuclear microsatellites, sequences from 11 single-copy nuclear markers and six Wolbachia genes. The results show that the European populations have a sevenfold higher mitochondrial sequence variation than North American populations, but similar levels of microsatellite and nuclear gene sequence variation. Variation in the North American mitochondria is extremely low (pi=0.31%), despite a highly elevated mutation rate (approximately 35-40 times higher than the nuclear genes) in the mitochondria of Nasonia. The data are indicative of a mitochondrial sweep in the North American population, possibly due to Wolbachia infections that are maternally co-inherited with the mitochondria. Owing to similar levels of nuclear variation, the data could not resolve whether N. vitripennis originated in the New or the Old World.


Subject(s)
Mitochondria/genetics , Phylogeny , Wasps/classification , Wolbachia/genetics , Animals , Bacterial Proteins/genetics , Evolution, Molecular , Genetic Variation , Insect Proteins/genetics , Microsatellite Repeats , Mitochondria/microbiology , Models, Genetic , Molecular Sequence Data , Mutation , North America , Wasps/genetics , Wasps/microbiology , Wolbachia/physiology
3.
J Evol Biol ; 22(3): 460-70, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19210592

ABSTRACT

Parasitoid Nasonia wasps adjust their progeny sex ratio to the presence of conspecifics to optimize their fitness. Another trait under female control is the induction of offspring diapause. We analysed progeny sex ratios and the proportion of diapausing offspring of individual Nasonia females in host patches parasitized by two species, Nasonia vitripennis and Nasonia giraulti, in North American field populations using microsatellite fingerprinting. Both Nasonia species produced similar sex ratios on hosts that were co-parasitized by their own species as by the other species, indicating that females do not distinguish between con- and heterospecific clutches. The sex ratios of the diapause and adult fractions of mixed broods from single females were not correlated. We found further indications that N. vitripennis females take the emergence time of the offspring into account in their sex allocation. The reproductive strategies of Nasonia under multiparasitism are largely adaptive, but also partially constrained by information.


Subject(s)
Wasps/physiology , Animals , Diptera/parasitology , Female , Male , Population Density , Pupa/parasitology , Reproduction/physiology , Sex Ratio
4.
Mol Ecol ; 17(12): 2854-64, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18482258

ABSTRACT

The parasitic wasp Nasonia vitripennis has been used extensively in sex allocation research. Although laboratory experiments have largely confirmed predictions of local mate competition (LMC) theory, the underlying assumptions of LMC models have hardly been explored in nature. We genotyped over 3500 individuals from two distant locations (in the Netherlands and Germany) at four polymorphic microsatellite loci to validate key assumptions of LMC theory, in terms of both the original models and more recent extensions to them. We estimated the number of females contributing eggs to patches of hosts and the clutch sizes as well as sex ratios produced by individual foundresses. In addition, we evaluated the level of inbreeding and population differentiation. Foundress numbers ranged from 1 to 7 (average 3.0 +/- 0.46 SE). Foundresses were randomly distributed across the patches and across hosts within patches, with few parasitizing more than one patch. Of the hosts, 40% were parasitized by more than one foundress. Clutch sizes of individual foundresses (average 9.99 +/- 0.51 SE) varied considerably between hosts. The time period during which offspring continued to emerge from a patch or host correlated strongly with foundress number, indicating that sequential rather than simultaneous parasitism is the more common. Genetic differentiation at the regional level between Germany and the Netherlands, as estimated by Slatkin's private allele method (0.11) and Hedrick's corrected G'(LT) (0.23), indicates significant substructuring between regions. The level of population inbreeding for the two localities (F(IL) = 0.168) fitted the expectation based on the average foundress number per patch.


Subject(s)
Sex Ratio , Wasps/genetics , Animals , Competitive Behavior/physiology , Female , Genetics, Population , Genotype , Germany , Male , Microsatellite Repeats/genetics , Netherlands , Sexual Behavior, Animal/physiology , Wasps/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...