Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1370991, 2024.
Article in English | MEDLINE | ID: mdl-38633254

ABSTRACT

Background and aims: X lymphoproliferative syndrome type 1 (XLP1) is a rare inborn error of immunity due to mutations of SH2D1A, encoding for slam-associated protein (SAP). The clinical phenotype includes severe mononucleosis, hemophagocytic lymphohistiocytosis (HLH), and B-cell lymphomas. Methods: We report the case of a child affected with XLP1 who presented with an incomplete HLH, triggered by Epstein-Barr virus (EBV) and treated with rituximab, involving orbits and paranasal sinuses. Results: The lesion was indistinguishable from lymphoma, complicating diagnosis and treatment. In addition, considering the high incidence of lymphoma in patients with XLP1, histology helped define its nature, driving therapeutic choices. Conclusion: We described an unusual presentation of incomplete HLH in a patient affected with XLP1: an EBV-driven infiltration of the orbits and paranasal sinuses. This led us to a challenging differential diagnosis of lymphoma-associated hemophagocytic syndrome, which can be frequently observed in patients with XLP1. Considering the extremely poor prognosis of this clinical finding, we sought for a prompt diagnosis and managed to obtain it and to immediately establish the right treatment on the basis of the pathological finding.


Subject(s)
Epstein-Barr Virus Infections , Immunologic Deficiency Syndromes , Lymphohistiocytosis, Hemophagocytic , Lymphoma , Lymphoproliferative Disorders , Child , Humans , Herpesvirus 4, Human , Rituximab , Epstein-Barr Virus Infections/genetics , Lymphohistiocytosis, Hemophagocytic/genetics
2.
Genes (Basel) ; 15(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540380

ABSTRACT

Initially described as a triad of immunodeficiency, congenital heart defects and hypoparathyroidism, 22q11.2 deletion syndrome (22q11.2DS) now encompasses a great amount of abnormalities involving different systems. Approximately 85% of patients share a 3 Mb 22q11.2 region of hemizygous deletion in which 46 protein-coding genes are included. However, the hemizygosity of the genes of this region cannot fully explain the clinical phenotype and the phenotypic variability observed among patients. Additional mutations in genes located outside the deleted region, leading to "dual diagnosis", have been described in 1% of patients. In some cases, the hemizygosity of the 22q11.2 region unmasks autosomal recessive conditions due to additional mutations on the non-deleted allele. Some of the deleted genes play a crucial role in gene expression regulation pathways, involving the whole genome. Typical miRNA expression patterns have been identified in 22q11.2DS, due to an alteration in miRNA biogenesis, affecting the expression of several target genes. Also, a methylation epi-signature in CpG islands differentiating patients from controls has been defined. Herein, we summarize the evidence on the genetic and epigenetic mechanisms implicated in the pathogenesis of the clinical manifestations of 22q11.2 DS. The review of the literature confirms the hypothesis that the 22q11.2DS phenotype results from a network of interactions between deleted protein-coding genes and altered epigenetic regulation.


Subject(s)
DiGeorge Syndrome , Heart Defects, Congenital , MicroRNAs , Humans , DiGeorge Syndrome/genetics , Epigenesis, Genetic , Phenotype , Heart Defects, Congenital/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...