Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0264160, 2022.
Article in English | MEDLINE | ID: mdl-35442985

ABSTRACT

The treatment of breast cancer is often complicated by lymphedema of the upper limbs. Standard lymphedema evaluation methodologies are not able to measure tissue fibrosis. The ultrasound aspects related to tissue microstructures of lymphedema are neglected in clinical evaluations. The objective of this study was to identify and measure the degree of impairment, topography, and biophysical alterations of subcutaneous lymphedema tissue secondary to the treatment of breast cancer by ultrasonography. Forty-two women at a mean age of 58 (±9.7) years, with unilateral lymphedema due to breast cancer treatment, were evaluated. The upper limbs were divided into affected (affected by lymphedema) and control (contralateral limb). Each limb was subdivided into seven areas, defined by perimetry, evaluated in pairs. The biophysical characteristics thickness, entropy, and echogenicity were evaluated by ultrasonography. The results showed a significant difference in the echogenicity and thickness variables between the affected and unaffected upper limb, in all the extent of the upper limb, while entropy showed no significant difference. The findings indicate that the data presented were consistent both in identifying and measuring the degree of impairment and biophysical changes in the subcutaneous tissue of lymphedema secondary to the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Lymphedema , Breast Neoplasms/complications , Female , Humans , Lymphedema/complications , Lymphedema/etiology , Middle Aged , Subcutaneous Tissue , Ultrasonography/methods , Upper Extremity/diagnostic imaging
2.
Ultrasound Med Biol ; 47(2): 334-344, 2021 02.
Article in English | MEDLINE | ID: mdl-33131928

ABSTRACT

The mechanical properties of biological tissues are fingerprints of certain pathologic processes. Ultrasound systems have been used as a non-invasive technique to both induce kilohertz-frequency mechanical vibrations and detect waves resulting from interactions with biological structures. However, existing methodologies to produce kilohertz-frequency mechanical vibrations using ultrasound require the use of variable-frequency, dual-frequency and high-power systems. Here, we propose and demonstrate the use of bursts of megahertz- frequency acoustic radiation to observe kilohertz-frequency mechanical responses in biological tissues. Femoral bones were obtained from 10 healthy mice and 10 mice in which osteoporosis had been induced. The bones' porosity, trabecular number, trabecular spacing, connectivity and connectivity density were determined using micro-computed tomography (µCT). The samples were irradiated with short, focused acoustic radiation pulses (f = 3.1 MHz, t = 15 µs), and the low-frequency acoustic response (1-100 kHz) was acquired using a dedicated hydrophone. A strong correlation between the spectral maps of the acquired signals and the µCT data was found. In a subsequent evaluation, soft tissue stiffness measurements were performed with a gel wax-based tissue-mimicking phantom containing three spherical inclusions of the same type of gel but different densities and Young's moduli, yet with approximately the same echogenicity. Conventional B-mode ultrasound was unable to image the inclusions, while the novel technique proposed here showed good image contrast.


Subject(s)
Femur/diagnostic imaging , Osteoporosis/diagnostic imaging , Ultrasonic Waves , Ultrasonography/methods , Animals , Cancellous Bone/diagnostic imaging , Elastic Modulus , Mice , Phantoms, Imaging , Porosity , Sound , X-Ray Microtomography
3.
Ultrasound Med Biol ; 43(9): 2086-2094, 2017 09.
Article in English | MEDLINE | ID: mdl-28648918

ABSTRACT

Phantoms are important tools for image quality control and medical training. Many phantom materials have been proposed for ultrasound; most of them use water as the solvent, but these materials have disadvantages such as dehydration and low temporal stability if not properly stored. To overcome these difficulties, copolymer-in-oil gel was proposed as an inert and stable material; however, speed of sound for these materials is still lower than what is described for most biological tissues. Here, we propose the glycerol dispersion in oil-based gels to modify the acoustic and elastic properties of copolymer-in-oil phantoms. We manufactured copolymer-in-oil gels using styrene-ethylene/butylene-styrene (SEBS) in concentrations 8%-15%. We used 2 types of mineral oils with different viscosities. Glycerol was added in a volume fraction 0%-30% of the total amount of liquid. The acoustic (i.e., speed of sound, attenuation and backscattering) and the mechanical (i.e., density and Young's modulus) properties of the samples were within the range of values observed for soft tissues. The acoustic parameters of the samples were dependent on oil viscosity and glycerol concentration. The speed of sound ranged 1423 m/s - 1502 m/s, while the acoustic attenuation and the ultrasonic backscattering increased by adding glycerol. The density and the Young's moduli were less affected by the presence of glycerol. We conclude that glycerol can be used to control the acoustic parameters of copolymer-in-oil gels. Additionally, it opens the possibility of incorporating other oil-insoluble substances to control further properties of the phantom.


Subject(s)
Gels , Glycerol , Phantoms, Imaging , Ultrasonography/methods , Acoustics , Elastic Modulus , Elasticity , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...