Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Travel Med Infect Dis ; 45: 102236, 2022.
Article in English | MEDLINE | ID: mdl-34921995

ABSTRACT

BACKGROUND: The purpose of the study was to challenge the hypothesis of an introduction of influenza viruses by international travellers and subsequent local circulation in Marseille, France. METHODS: We analysed the epidemiological data of PCR-confirmed cases over an eight-year period and compared the genomic data of local and imported influenza viruses during a six-month period. RESULTS: Between June 2013 and December 2020, 12,434 patients in the Assistance Publique-Hospitaux de Marseille were diagnosed with an influenza virus infection at the laboratory of the Institut Hospitalo-Universitaire Méditerranéee Infection of Marseille. Half of the patients were below the age of 20. Most of the imported cases were diagnosed outside of epidemic periods. Fourteen genomes of the influenza A virus, including six in international travellers returning from Europe or from the Arabian Peninsula and eight from patients who had not travelled were analysed. Sequences of influenza A/H1N1 virus genomes detected in subjects who had travelled to Saudi Arabia were in the same clade and differed from sequences detected later in a traveller returning from Italy, and in non-travellers who were infected in Marseille. This suggests that influenza viruses imported from Saudi Arabia did not subsequently circulate in Marseille. CONCLUSION: Future studies with higher numbers of genomes are needed to confirm this result.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , France/epidemiology , Genomics , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Travel
3.
J Infect ; 83(3): 361-370, 2021 09.
Article in English | MEDLINE | ID: mdl-34310945

ABSTRACT

OBJECTIVES: We attempted to establish a molecular investigation by Next Generation sequencing of the measles virus (MeV) strains circulating in Marseille-France during the last outbreak that occurred between 2017 and 2019. METHODS: The circulating MeV were isolated from clinical samples using cell culture method and whole genomes were sequenced by Illumina Miseq Next Generation. Genotyping and comparative analyses were assessed by phylogenetic reconstructions. Clinical and epidemiological data from cases were also recorded. RESULTS: A total of 110 MeV strains were isolated in cell culture. Our analysis based on whole genome sequences of 98 isolates confirmed that 93 strains belonged to the genotype D8 and 5 to the genotype B3. Phylogenetic analyses revealed 4 distinct MeV circulating clones in Marseille. Measles mostly occured in children < 5 years-old and in adults 30-50 years-old. Measles infection also occurred in 2 adequately vaccinated cases (2 doses). Among 63 measles cases of whom we had available clinical data informations, a total of 35 patients were hospitalized and 19 developed complications including one death case recorded. CONCLUSIONS: Whole Genome Sequencing seems to be a useful tool for more refined genomic characterization of large measles outbreak. Vaccination strategies for measles eradication need to be re-evaluated in the current context.


Subject(s)
Measles virus , Measles , Adult , Child, Preschool , Disease Outbreaks , France/epidemiology , Genotype , Humans , Measles/epidemiology , Measles/prevention & control , Measles virus/genetics , Middle Aged , Phylogeny
4.
Pathogens ; 10(5)2021 Apr 24.
Article in English | MEDLINE | ID: mdl-33923138

ABSTRACT

The ongoing outbreak of novel coronavirus pneumonia (COVID-19) caused by SARS-CoV-2 infection has spread rapidly worldwide. The major transmission routes of SARS-CoV-2 are recognised as inhalation of aerosol/droplets and person-to-person contact. However, some studies have demonstrated that live SARS-CoV-2 can be isolated from the faeces and urine of infected patients, which can then enter the wastewater system. The currently available evidence indicates that the viral RNA present in wastewater may become a potential source of epidemiological data. However, to investigate whether wastewater may present a risk to humans such as sewage workers, we investigated whether intact particles of SARS-CoV-2 were observable and whether it was possible to isolate the virus in wastewater. Using a correlative strategy of light microscopy and electron microscopy (CLEM), we demonstrated the presence of intact and degraded SARS-like particles in RT-qPCR SARS-CoV-2-positive sewage sample collected in the city of Marseille. However, the viral infectivity assessment of SARS-CoV-2 in the wastewater was inconclusive, due to the presence of other viruses known to be highly resistant in the environment such as enteroviruses, rhinoviruses, and adenoviruses. Although the survival and the infectious risk of SARS-CoV-2 in wastewater cannot be excluded from our study, additional work may be required to investigate the stability, viability, fate, and decay mechanisms of SARS-CoV-2 thoroughly in wastewater.

6.
Clin Microbiol Infect ; 27(1): 128.e1-128.e7, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32979576

ABSTRACT

OBJECTIVES: A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is responsible for the current coronavirus disease 2019 global pandemic. Only a few laboratories routinely isolate the virus, which is because the current co-culture strategy is highly time-consuming and requires a biosafety level 3 laboratory. This work aimed to develop a new high-throughput isolation strategy using novel technologies for rapid and automated isolation of SARS-CoV-2. METHODS: We used an automated microscope based on high-content screening (HCS), and we applied specific image analysis algorithms targeting cytopathic effects of SARS-CoV-2 on Vero E6 cells. A randomized panel of 104 samples, including 72 that tested positive by RT-PCR and 32 that tested negative, were processed with our HCS strategy and were compared with the classical isolation procedure. RESULTS: The isolation rate was 43% (31/72) with both strategies on RT-PCR-positive samples and was correlated with the initial RNA viral load in the samples, in which we obtained a positivity threshold of 27 Ct. Co-culture delays were shorter with the HCS strategy, where 80% (25/31) of the positive samples were recovered by the third day of co-culture, compared with only 26% (8/30) with the classic strategy. Moreover, only the HCS strategy allowed us to recover all the positive samples (31 with HCS versus 27 with classic strategy) after 1 week of co-culture. CONCLUSIONS: This system allows the rapid and automated screening of clinical samples with minimal operator workload, which reduces the risk of contamination and paves the way for future applications in clinical microbiology, such as large-scale drug susceptibility testing.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Image Processing, Computer-Assisted/statistics & numerical data , RNA, Viral/analysis , SARS-CoV-2/isolation & purification , Animals , Automation, Laboratory , Biomarkers/analysis , COVID-19/virology , Chlorocebus aethiops , Hospitalization , Humans , Microscopy/methods , Nasopharynx/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/standards , SARS-CoV-2/genetics , Specimen Handling/methods , Vero Cells , Viral Load
7.
Microorganisms ; 8(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33202777

ABSTRACT

Enteroviruses (EVs) are viruses of the family Picornaviridae that cause mild to severe infections in humans and in several animal species, including non-human primates (NHPs). We conducted a survey and characterization of enteroviruses circulating between humans and great apes in the Congo. Fecal samples (N = 24) of gorillas and chimpanzees living close to or distant from humans in three Congolese parks were collected, as well as from healthy humans (N = 38) living around and within these parks. Enteroviruses were detected in 29.4% of gorilla and 13.15% of human feces, including wild and human-habituated gorillas, local humans and eco-guards. Two identical strains were isolated from two humans coming from two remote regions. Their genomes were similar and all genes showed their close similarity to coxsackieviruses, except for the 3C, 3D and 5'-UTR regions, where they were most similar to poliovirus 1 and 2, suggesting recombination. Recombination events were found between these strains, poliovirus 1 and 2 and EV-C99. It is possible that the same EV-C species circulated in both humans and apes in different regions in the Congo, which must be confirmed in other investigations. In addition, other studies are needed to further investigate the circulation and genetic diversity of enteroviruses in the great ape population, to draw a definitive conclusion on the different species and types of enteroviruses circulating in the Republic of Congo.

8.
Eur J Clin Microbiol Infect Dis ; 39(6): 1059-1061, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32342252

ABSTRACT

In a preliminary clinical study, we observed that the combination of hydroxychloroquine and azithromycin was effective against SARS-CoV-2 by shortening the duration of viral load in Covid-19 patients. It is of paramount importance to define when a treated patient can be considered as no longer contagious. Correlation between successful isolation of virus in cell culture and Ct value of quantitative RT-PCR targeting E gene suggests that patients with Ct above 33-34 using our RT-PCR system are not contagious and thus can be discharged from hospital care or strict confinement for non-hospitalized patients.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Patient Discharge , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , Viral Load , Animals , Betacoronavirus/isolation & purification , COVID-19 , Chlorocebus aethiops , France , Humans , Pandemics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Specimen Handling/standards , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...