Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-19204068

ABSTRACT

In the animal kingdom, maternal control of early development is a common feature. The onset of zygotic control over early development, defined as the maternal to zygotic transition (MZT), follows fertilization with a delay of a variable number of cell divisions, depending on the species. The MZT has been well defined in animals, but investigations remain in their infancy in plants. Recent evidence suggests, however, that in plants as in animals, the MZT also occurs several division cycles after fertilization. The likely convergent evolution of the MZT in the animal and plant kingdoms is fascinating and raises major questions regarding its biological significance, particularly with regard to its importance in genome reprogramming and the acquisition of totipotency by the embryo.


Subject(s)
Seeds/physiology , Zygote/physiology , Animals , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis/physiology , Drosophila/embryology , Drosophila/genetics , Drosophila/physiology , Embryonic Development/genetics , Female , Fertilization , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Male , Mice , Models, Biological , Pregnancy
2.
New Phytol ; 160(3): 557-568, 2003 Dec.
Article in English | MEDLINE | ID: mdl-33873658

ABSTRACT

• The parasitic weed Striga hermonthica lowers cereal yield in small-holder farms in Africa. Complete resistance in maize to S. hermonthica infection has not been identified. A valuable source of resistance to S. hermonthica may lie in the genetic potential of wild germplasm. • The susceptibility of a wild relative of maize, Tripsacum dactyloides and a Zea mays-T. dactyloides hybrid to S. hermonthica infection was determined. Striga hermonthica development was arrested after attachment to T. dactyloides. Vascular continuity was established between parasite and host but there was poor primary haustorial tissue differentiation on T. dactyloides compared with Z. mays. Partial resistance was inherited in the hybrid. • Striga hermonthica attached to Z. mays was manipulated such that different secondary haustoria could attach to different hosts. Secondary haustoria formation was inhibited on T. dactyloides, moreover, subsequent haustoria formation on Z. mays was also impaired. • Results suggest that T. dactyloides produces a signal that inhibits haustorial development: this signal may be mobile within the parasite haustorial root system.

3.
Trends Genet ; 17(10): 597-604, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11585667

ABSTRACT

Some higher plants reproduce asexually by apomixis, a natural way of cloning through seeds. Apomictic plants produce progeny that are an exact genetic replica of the mother plant. The replication is achieved through changes in the female reproductive pathway such that female gametes develop without meiosis and embryos develop without fertilization. Although apomixis is a complex developmental process, genetic evidence suggests that it might be inherited as a simple mendelian trait - a paradox that could be explained by recent data derived from apomictic species and model sexual organisms. The data suggest that apomixis might rely more on a global deregulation of sexual reproductive development than on truly new functions, and molecular mechanisms for such a global deregulation can be proposed. This new understanding has direct consequences for the engineering of apomixis in sexual crop species, an application that could have an immense impact on agriculture.


Subject(s)
Plant Development , Plants/genetics , Agriculture , Genes, Plant , Genomic Imprinting , Models, Genetic , Plant Physiological Phenomena , Polyploidy , Reproduction, Asexual/genetics
4.
Heredity (Edinb) ; 80 ( Pt 1): 33-9, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9474774

ABSTRACT

Polyploids in Tripsacum, a wild relative of maize, reproduce through the diplosporous type of apomixis, an asexual mode of reproduction through seeds. Diplosporous apomixis involves both the failure of meiosis and the parthenogenetic development of the unreduced gametes, resulting in progenies that are exact genetic copies of the mother plant. Apomixis is believed to be controlled by one single dominant allele, responsible for the whole developmental process. Construction of a linkage map for the chromosome controlling diplosporous apomixis in Tripsacum was carried out in both tetraploid-apomictic and diploid-sexual Tripsacum species using maize restriction fragment length polymorphism (RFLP) probes. A high level of collinearity was observed between the Tripsacum chromosome carrying the control of apomixis and a duplicated segment in the maize genome. In the apomictic tetraploid, there was a strong restriction to recombination, as compared to the corresponding genomic segment in sexual plants and maize. This suggests that apomixis, although inherited as a single Mendelian allele, might really be controlled by a cluster of linked loci. The analysis also revealed the tetrasomic nature of the inheritance of the chromosomal segment controlling apomixis, which contradicts the usually accepted hypothesis of an allopolyploid origin of apomictic species. The implications of these data for the transfer of apomixis into cultivated crops are discussed, and a new approach to studying the genetics of apomixis, based on comparative mapping, is proposed.


Subject(s)
Chromosome Mapping , Edible Grain/genetics , Genes, Plant , Polyploidy
5.
Heredity (Edinb) ; 80 ( Pt 1): 40-7, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9474775

ABSTRACT

Apomixis is a mode of asexual reproduction through seeds. The apomictic process bypasses both meiosis and egg cell fertilization, producing offspring that are exact genetic replicas of the mother plant. In the Tripsacum agamic complex, all polyploids reproduce through the diplosporous type of apomixis, and diploids are sexual. In this paper, molecular markers linked with diplospory were used to analyse various generations of maize-Tripsacum hybrids and backcross derivatives and to derive a model for the inheritance of diplosporous reproduction. The results suggest that the gene or genes controlling apomixis in Tripsacum are linked with a segregation distorter-type system promoting the elimination of the apomixis alleles when transmitted through haploid gametes. Hence, this model offers an explanation of the relationship between apomixis and polyploidy. The evolutionary importance of this mechanism, which protects the diploid level from being invaded by apomixis, is discussed.


Subject(s)
Edible Grain/genetics , Genes, Plant , Zea mays/genetics , Chimera , Genetic Markers , Polymorphism, Restriction Fragment Length , Reproduction
6.
Theor Appl Genet ; 90(7-8): 1198-203, 1995 Jun.
Article in English | MEDLINE | ID: mdl-24173084

ABSTRACT

Polyploid plants in the genus Tripsacum, a wild relative of maize, reproduce through gametophytic apomixis of the diplosporous type, an asexual mode of reproduction through seed. Moving gene(s) responsible for the apomictic trait into crop plants would open new areas in plant breeding and agriculture. Efforts to transfer apomixis from Tripsacum into maize at CIMMYT resulted in numerou intergeneric F1 hybrids obtained from various Tripsacum species. A bulk-segregant analysis was carried out to identify molecular markers linked to diplospory in T. dactyloides. This was possible because of numerous genome similarities among related species in the Andropogoneae. On the basis of maize RFLP probes, three restriction fragments co-segregating with diplospory were identified in one maize-Tripsacum dactyloides F1 population that segregated 1∶1 for the mode of reproduction. The markers were also found to be linked in the maize RFLP map, on the distal end of the long arm of chromosome 6. These results support a simple inheritance of diplospory in Tripsacum. Manipulation of the mode of reproduction in maize-Tripsacum backcross generations, and implications for the transfer of apomixis into maize, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...