Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Plant Reprod ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38019279

ABSTRACT

KEY MESSAGE: The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.

2.
Cell ; 186(19): 4100-4116.e15, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37643610

ABSTRACT

Nucleosomes block access to DNA methyltransferase, unless they are remodeled by DECREASE in DNA METHYLATION 1 (DDM1LSH/HELLS), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 promotes replacement of histone variant H3.3 by H3.1. In ddm1 mutants, DNA methylation is partly restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals engagement with histone H3.3 near residues required for assembly and with the unmodified H4 tail. An N-terminal autoinhibitory domain inhibits activity, while a disulfide bond in the helicase domain supports activity. DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1Dnmt1, but is blocked by H4K16 acetylation. The male germline H3.3 variant MGH3/HTR10 is resistant to remodeling by DDM1 and acts as a placeholder nucleosome in sperm cells for epigenetic inheritance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Histones , Nucleosomes , Chromatin Assembly and Disassembly , DNA , DNA Modification Methylases , Epigenesis, Genetic , Histones/genetics , Nucleosomes/genetics , Semen , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
3.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577592

ABSTRACT

Retrotransposons have invaded eukaryotic centromeres in cycles of repeat expansion and purging, but the function of centromeric retrotransposons, if any, has remained unclear. In Arabidopsis, centromeric ATHILA retrotransposons give rise to epigenetically activated short interfering RNAs (easiRNAs) in mutants in DECREASE IN DNA METHYLATION1 (DDM1), which promote histone H3 lysine-9 di-methylation (H3K9me2). Here, we show that mutants which lose both DDM1 and RNA dependent RNA polymerase (RdRP) have pleiotropic developmental defects and mis-segregation of chromosome 5 during mitosis. Fertility defects are epigenetically inherited with the centromeric region of chromosome 5, and can be rescued by directing artificial small RNAs to a single family of ATHILA5 retrotransposons specifically embedded within this centromeric region. easiRNAs and H3K9me2 promote pericentromeric condensation, chromosome cohesion and proper chromosome segregation in mitosis. Insertion of ATHILA silences transcription, while simultaneously making centromere function dependent on retrotransposon small RNAs, promoting the selfish survival and spread of centromeric retrotransposons. Parallels are made with the fission yeast S. pombe, where chromosome segregation depends on RNAi, and with humans, where chromosome segregation depends on both RNAi and HELLSDDM1.

4.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37503143

ABSTRACT

Epigenetic inheritance refers to the faithful replication of DNA methylation and histone modification independent of DNA sequence. Nucleosomes block access to DNA methyltransferases, unless they are remodeled by DECREASE IN DNA METHYLATION1 (DDM1 Lsh/HELLS ), a Snf2-like master regulator of epigenetic inheritance. We show that DDM1 activity results in replacement of the transcriptional histone variant H3.3 for the replicative variant H3.1 during the cell cycle. In ddm1 mutants, DNA methylation can be restored by loss of the H3.3 chaperone HIRA, while the H3.1 chaperone CAF-1 becomes essential. The single-particle cryo-EM structure at 3.2 Å of DDM1 with a variant nucleosome reveals direct engagement at SHL2 with histone H3.3 at or near variant residues required for assembly, as well as with the deacetylated H4 tail. An N-terminal autoinhibitory domain binds H2A variants to allow remodeling, while a disulfide bond in the helicase domain is essential for activity in vivo and in vitro . We show that differential remodeling of H3 and H2A variants in vitro reflects preferential deposition in vivo . DDM1 co-localizes with H3.1 and H3.3 during the cell cycle, and with the DNA methyltransferase MET1 Dnmt1 . DDM1 localization to the chromosome is blocked by H4K16 acetylation, which accumulates at DDM1 targets in ddm1 mutants, as does the sperm cell specific H3.3 variant MGH3 in pollen, which acts as a placeholder nucleosome in the germline and contributes to epigenetic inheritance.

5.
PLoS One ; 17(8): e0273695, 2022.
Article in English | MEDLINE | ID: mdl-36040902

ABSTRACT

Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.


Subject(s)
Arabidopsis Proteins , DNA Methylation , Arabidopsis Proteins/genetics , DNA/metabolism , Gene Expression Regulation, Plant , Mutation , RNA, Plant/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Zea mays/genetics , Zea mays/metabolism
6.
Elife ; 102021 05 07.
Article in English | MEDLINE | ID: mdl-33960300

ABSTRACT

In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Cell Division , Ovule/physiology , Arabidopsis/growth & development , Cell Cycle , Cell Differentiation , Cell Proliferation , Mutation , Ovule/genetics
7.
Genes Dev ; 35(11-12): 841-846, 2021 06.
Article in English | MEDLINE | ID: mdl-34016690

ABSTRACT

Epigenetic reprogramming occurs during gametogenesis as well as during embryogenesis to reset the genome for early development. In flowering plants, many heterochromatic marks are maintained in sperm, but asymmetric DNA methylation is mostly lost. Asymmetric DNA methylation is dependent on small RNA but the re-establishment of silencing in embryo is not well understood. Here we demonstrate that small RNAs direct the histone H3 lysine 9 dimethylation during Arabidopsis thaliana embryonic development, together with asymmetric DNA methylation. This de novo silencing mechanism depends on the catalytic domain of SUVH9, a Su(Var)3-9 homolog thought to be catalytically inactive.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , DNA Methylation/genetics , Histones/metabolism , RNA, Plant/metabolism , Seeds/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Epigenesis, Genetic/genetics , Gene Silencing , Seeds/genetics
8.
Curr Protoc ; 1(4): e101, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33826805

ABSTRACT

The localization of a protein provides important information about its biological functions. The visualization of proteins by immunofluorescence has become an essential approach in cell biology. Here, we describe an easy-to-follow immunofluorescence protocol to localize proteins in whole-mount tissues of maize (Zea mays) and Arabidopsis. We present the whole-mount immunofluorescence procedure using maize ear primordia and Arabidopsis inflorescence apices as examples, followed by tips and suggestions for each step. In addition, we provide a supporting protocol to describe the use of an ImageJ plug-in to analyze colocalization. This protocol has been optimized to observe proteins in 2-5 mm maize ear primordia or in developing Arabidopsis inflorescence apices; however, it can be used as a reference to perform whole-mount immunofluorescence in other plant tissues and species. © 2021 Wiley Periodicals LLC. Basic Protocol: Whole-mount immunofluorescence for maize and Arabidopsis shoot apices Support Protocol: Measure colocalization by JACoP plugin in ImageJ.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Fluorescent Antibody Technique , Inflorescence , Zea mays
9.
J Mol Biol ; 432(6): 1706-1717, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31931004

ABSTRACT

In plants, DNA methylation occurs in distinct sequence contexts, including CG, CHG, and CHH. Thus, plants have developed a surprisingly diverse set of DNA methylation readers to cope with an extended repertoire of methylated sites. The Arabidopsis genome contains twelve Methyl-Binding Domain proteins (MBD), and nine SET and RING finger-associated (SRA) domain containing proteins belonging to the SUVH clade, in addition to three homologs of UHRF1, namely VIM1-3, all containing SRA domains. In this review, we will highlight several research questions that remain unresolved with respect to the function of plant DNA methylation readers, which can have both de novo demethylase and maintenance activity. We argue that maintenance of CG methylation in plants likely involved actors not found in their mammalian counterparts, and that new evidence suggests significant reprogramming of DNA methylation during plant reproduction as an important new development in the field.

10.
PLoS Genet ; 15(12): e1008512, 2019 12.
Article in English | MEDLINE | ID: mdl-31860672

ABSTRACT

In plants, local adaptation across species range is frequent. Yet, much has to be discovered on its environmental drivers, the underlying functional traits and their molecular determinants. Genome scans are popular to uncover outlier loci potentially involved in the genetic architecture of local adaptation, however links between outliers and phenotypic variation are rarely addressed. Here we focused on adaptation of teosinte populations along two elevation gradients in Mexico that display continuous environmental changes at a short geographical scale. We used two common gardens, and phenotyped 18 traits in 1664 plants from 11 populations of annual teosintes. In parallel, we genotyped these plants for 38 microsatellite markers as well as for 171 outlier single nucleotide polymorphisms (SNPs) that displayed excess of allele differentiation between pairs of lowland and highland populations and/or correlation with environmental variables. Our results revealed that phenotypic differentiation at 10 out of the 18 traits was driven by local selection. Trait covariation along the elevation gradient indicated that adaptation to altitude results from the assembly of multiple co-adapted traits into a complex syndrome: as elevation increases, plants flower earlier, produce less tillers, display lower stomata density and carry larger, longer and heavier grains. The proportion of outlier SNPs associating with phenotypic variation, however, largely depended on whether we considered a neutral structure with 5 genetic groups (73.7%) or 11 populations (13.5%), indicating that population stratification greatly affected our results. Finally, chromosomal inversions were enriched for both SNPs whose allele frequencies shifted along elevation as well as phenotypically-associated SNPs. Altogether, our results are consistent with the establishment of an altitudinal syndrome promoted by local selective forces in teosinte populations in spite of detectable gene flow. Because elevation mimics climate change through space, SNPs that we found underlying phenotypic variation at adaptive traits may be relevant for future maize breeding.


Subject(s)
Acclimatization , Plant Proteins/genetics , Poaceae/growth & development , Quantitative Trait Loci , Gene Flow , Genetics, Population , Genotyping Techniques , Mexico , Microsatellite Repeats , Phenotype , Poaceae/classification , Poaceae/genetics , Polymorphism, Single Nucleotide , Selection, Genetic
11.
New Phytol ; 223(2): 575-581, 2019 07.
Article in English | MEDLINE | ID: mdl-30920664

ABSTRACT

Methylation of DNA is an epigenetic mechanism for the control of gene expression. Alterations in the regulatory pathways involved in the establishment, perpetuation and removal of DNA methylation can lead to severe developmental alterations. Our understanding of the mechanistic aspects and relevance of DNA methylation comes from remarkable studies in well-established angiosperm plant models including maize and Arabidopsis. The study of plant models positioned at basal lineages opens exciting opportunities to expand our knowledge on the function and evolution of the components of DNA methylation. In this Tansley Insight, we summarize current progress in our understanding of the molecular basis and relevance of DNA methylation in the liverwort Marchantia polymorpha.


Subject(s)
DNA Methylation/genetics , Marchantia/genetics , DNA-Directed RNA Polymerases/metabolism , Marchantia/growth & development , Models, Biological , RNA, Plant/metabolism
12.
Am Nat ; 192(5): 577-592, 2018 11.
Article in English | MEDLINE | ID: mdl-30332585

ABSTRACT

Resource allocation to offspring is the battleground for various intrafamilial conflicts. Understanding these conflicts requires knowledge of how the different actors (mother, siblings with different paternal genotypes) influence resource allocation. In angiosperms, allocation of resources to seeds happens postfertilization, and the paternally inherited genome in offspring can therefore influence resource allocation. However, the precise mode of resource allocation-and, in particular, the occurrence of sibling rivalry-has rarely been investigated in plants. In this article, we develop a new method for analyzing the resource-allocation traits of the different actors (maternal sporophyte and half-sibs) using data obtained from a large-scale diallel cross experiment in maize involving mixed hand pollination and color markers to assess seed weight of known paternity. We found strong evidence for the occurrence of sibling rivalry: resources invested in an ear were allocated competitively, and offspring with different paternal genotypes aggressively competed for these resources, entailing a measurable direct cost to the mother. We also show how resource allocation can be described for each genotype by two maternal traits (source effect, average sink responsiveness) and two offspring traits (ability to attract maternal resources, competitive ability toward siblings). We will discuss how these findings help to understand how genetic conflicts shape resource-allocation traits in angiosperms.


Subject(s)
Seeds/genetics , Zea mays/genetics , Color , Genotype , Pollen , Seeds/growth & development , Zea mays/growth & development
13.
Plant Cell Physiol ; 59(12): 2421-2431, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30102384

ABSTRACT

DNA methylation is an epigenetic mark that ensures silencing of transposable elements (TEs) and affects gene expression in many organisms. The function of different DNA methylation regulatory pathways has been largely characterized in the model plant Arabidopsis thaliana. However, far less is known about DNA methylation regulation and functions in basal land plants. Here we focus on the liverwort Marchantia polymorpha, an emerging model species that represents a basal lineage of land plants. We identified MpMET, the M. polymorpha ortholog of the METHYLTRANSFERASE 1 (MET1) gene required for maintenance of methylation at CG sites in angiosperms. We generated Mpmet mutants using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein9) system, which showed a significant loss of CG methylation and severe morphological changes and developmental defects. The mutants developed many adventitious shoot-like structures, suggesting that MpMET is required for maintaining differentiated cellular identities in the gametophyte. Even though numerous TEs were up-regulated, non-CG methylation was generally highly increased at TEs in the Mpmet mutants. Closer inspection of CHG methylation revealed features unique to M. polymorpha. Methylation of CCG sites in M. polymorpha does not depend on MET1, unlike in A. thaliana and Physcomitrella patens. Our results highlight the diversity of non-CG methylation regulatory mechanisms in plants.


Subject(s)
Cell Division/genetics , CpG Islands/genetics , DNA Methylation/genetics , Marchantia/cytology , Marchantia/genetics , DNA Transposable Elements/genetics , Genome, Plant , Mutation/genetics
14.
Cell ; 171(2): 287-304.e15, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985561

ABSTRACT

The evolution of land flora transformed the terrestrial environment. Land plants evolved from an ancestral charophycean alga from which they inherited developmental, biochemical, and cell biological attributes. Additional biochemical and physiological adaptations to land, and a life cycle with an alternation between multicellular haploid and diploid generations that facilitated efficient dispersal of desiccation tolerant spores, evolved in the ancestral land plant. We analyzed the genome of the liverwort Marchantia polymorpha, a member of a basal land plant lineage. Relative to charophycean algae, land plant genomes are characterized by genes encoding novel biochemical pathways, new phytohormone signaling pathways (notably auxin), expanded repertoires of signaling pathways, and increased diversity in some transcription factor families. Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant. PAPERCLIP.


Subject(s)
Biological Evolution , Embryophyta/genetics , Genome, Plant , Marchantia/genetics , Adaptation, Biological , Embryophyta/physiology , Gene Expression Regulation, Plant , Marchantia/physiology , Molecular Sequence Annotation , Signal Transduction , Transcription, Genetic
15.
Genes Dev ; 31(1): 72-83, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28115468

ABSTRACT

Cytosine methylation is a key epigenetic mark in many organisms, important for both transcriptional control and genome integrity. While relatively stable during somatic growth, DNA methylation is reprogrammed genome-wide during mammalian reproduction. Reprogramming is essential for zygotic totipotency and to prevent transgenerational inheritance of epimutations. However, the extent of DNA methylation reprogramming in plants remains unclear. Here, we developed sensors reporting with single-cell resolution CG and non-CG methylation in Arabidopsis. Live imaging during reproduction revealed distinct and sex-specific dynamics for both contexts. We found that CHH methylation in the egg cell depends on DOMAINS REARRANGED METHYLASE 2 (DRM2) and RNA polymerase V (Pol V), two main actors of RNA-directed DNA methylation, but does not depend on Pol IV. Our sensors provide insight into global DNA methylation dynamics at the single-cell level with high temporal resolution and offer a powerful tool to track CG and non-CG methylation both during development and in response to environmental cues in all organisms with methylated DNA, as we illustrate in mouse embryonic stem cells.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , DNA Methylation/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Single-Cell Analysis , Animals , Arabidopsis Proteins/metabolism , Cell Line , DNA-Directed RNA Polymerases/metabolism , Embryonic Stem Cells , Gene Expression Regulation , Mice , Plants, Genetically Modified , Reproduction/genetics , Sex Factors
16.
J Vis Exp ; (88): e51530, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24998753

ABSTRACT

In flowering plants, the somatic-to-reproductive cell fate transition is marked by the specification of spore mother cells (SMCs) in floral organs of the adult plant. The female SMC (megaspore mother cell, MMC) differentiates in the ovule primordium and undergoes meiosis. The selected haploid megaspore then undergoes mitosis to form the multicellular female gametophyte, which will give rise to the gametes, the egg cell and central cell, together with accessory cells. The limited accessibility of the MMC, meiocyte and female gametophyte inside the ovule is technically challenging for cytological and cytogenetic analyses at single cell level. Particularly, direct or indirect immunodetection of cellular or nuclear epitopes is impaired by poor penetration of the reagents inside the plant cell and single-cell imaging is demised by the lack of optical clarity in whole-mount tissues. Thus, we developed an efficient method to analyze the nuclear organization and chromatin modification at high resolution of single cell in whole-mount embedded Arabidopsis ovules. It is based on dissection and embedding of fixed ovules in a thin layer of acrylamide gel on a microscopic slide. The embedded ovules are subjected to chemical and enzymatic treatments aiming at improving tissue clarity and permeability to the immunostaining reagents. Those treatments preserve cellular and chromatin organization, DNA and protein epitopes. The samples can be used for different downstream cytological analyses, including chromatin immunostaining, fluorescence in situ hybridization (FISH), and DNA staining for heterochromatin analysis. Confocal laser scanning microscopy (CLSM) imaging, with high resolution, followed by 3D reconstruction allows for quantitative measurements at single-cell resolution.


Subject(s)
Arabidopsis/chemistry , Arabidopsis/ultrastructure , Chromatin/chemistry , Ovule/chemistry , Ovule/ultrastructure , Single-Cell Analysis/methods , Arabidopsis/metabolism , Cell Nucleus/chemistry , Cell Nucleus/ultrastructure , Chromatin/metabolism , DNA, Plant/analysis , In Situ Hybridization, Fluorescence/methods
17.
Development ; 140(19): 4008-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24004947

ABSTRACT

The life cycle of flowering plants is marked by several post-embryonic developmental transitions during which novel cell fates are established. Notably, the reproductive lineages are first formed during flower development. The differentiation of spore mother cells, which are destined for meiosis, marks the somatic-to-reproductive fate transition. Meiosis entails the formation of the haploid multicellular gametophytes, from which the gametes are derived, and during which epigenetic reprogramming takes place. Here we show that in the Arabidopsis female megaspore mother cell (MMC), cell fate transition is accompanied by large-scale chromatin reprogramming that is likely to establish an epigenetic and transcriptional status distinct from that of the surrounding somatic niche. Reprogramming is characterized by chromatin decondensation, reduction in heterochromatin, depletion of linker histones, changes in core histone variants and in histone modification landscapes. From the analysis of mutants in which the gametophyte fate is either expressed ectopically or compromised, we infer that chromatin reprogramming in the MMC is likely to contribute to establishing postmeiotic competence to the development of the pluripotent gametophyte. Thus, as in primordial germ cells of animals, the somatic-to-reproductive cell fate transition in plants entails large-scale epigenetic reprogramming.


Subject(s)
Arabidopsis/cytology , Arabidopsis/genetics , Chromatin/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Histones/genetics , Histones/metabolism , Reproduction/genetics , Reproduction/physiology
18.
Curr Top Dev Biol ; 104: 189-222, 2013.
Article in English | MEDLINE | ID: mdl-23587242

ABSTRACT

Plants are sessile organisms that must constantly adjust to their environment. In contrast to animals, plant development mainly occurs postembryonically and is characterized by continuous growth and extensive phenotypic plasticity. Chromatin-level regulation of transcriptional patterns plays a central role in the ability of plants to adapt to internal and external cues. Here, we review selected examples of chromatin-based mechanisms involved in the regulation of key aspects of plant development. These illustrate that, in addition to mechanisms conserved between plants and animals, plant-specific innovations lead to particular chromatin dynamics related to their developmental and life strategies.


Subject(s)
Epigenesis, Genetic , Plant Development/genetics , Plants/genetics , Chromatin/metabolism , Inheritance Patterns/genetics , Reproduction/genetics
19.
Curr Opin Genet Dev ; 23(1): 72-4, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23453901

ABSTRACT

In plants and animals, embryo development becomes ultimately controlled by zygotic genes, but the timing of zygotic genome activation (ZGA) varies greatly between organisms. We recently showed that the transcriptome of young Arabidopsis embryos is dominated by maternal transcripts with a progressive ZGA under the maternal control of epigenetic pathways. In contrast, another study reported that both parental genomes contribute equally to the transcriptome of young embryos, suggesting that ZGA occurs immediately after fertilization. How to explain such dramatic differences? We propose that the discrepancies between these two studies likely reflect genuine biological differences between the two experiments, paving the road towards exciting discoveries on ZGA mechanisms in plants.


Subject(s)
Arabidopsis/genetics , Genome, Plant , Seeds/genetics , Transcriptome , Epigenomics , Fertilization/genetics
20.
Curr Opin Plant Biol ; 15(1): 57-62, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22037465

ABSTRACT

Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. While apomixis is genetically controlled, individual loci contributing to its expression have yet to be identified. Here, we review recent results indicating that RNA-dependent DNA methylation pathways acting during female reproduction are essential for proper reproductive development in plants, and may represent key regulators of the differentiation between apomictic and sexual reproduction.


Subject(s)
Apomixis/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Magnoliopsida/growth & development , Magnoliopsida/genetics , Ovule/growth & development , RNA, Plant/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...