Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 229(Pt 3): 421-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331489

ABSTRACT

We propose a new approach for tuning the Surface Plasmon (SP) resonance wavelength using hybrid nanoparticles. Our approach is based on nanoscale photopolymerization around metal nanoparticles. The enhanced optical near-field of silver nanoparticles triggers local photopolymerization. As a result, atomic force microscopy reveals two nanoscale polymerized lobes around nanoparticles, with a controlled effective index distribution. A spectral breaking degeneracy of surface plasmon resonance of the nanoparticles has been demonstrated by polarized extinction spectroscopy.

2.
J Microsc ; 229(Pt 3): 428-32, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331490

ABSTRACT

We numerically study the influence of the shape of gold nanostructures on the spectral position of their localized surface plasmon resonance and on Surface Enhanced Raman Scattering efficiency. Calculations are performed using a Finite-Difference Time-Domain (FDTD) method, whose accuracy for dispersive media is enhanced through the use of a Drude-Lorentz model. The relevance of this method is then pointed out by comparing the calculations with experimental data for both the plasmon resonance and the Raman signal enhancement. The influence of a thin layer of water is also investigated.

3.
Colloids Surf B Biointerfaces ; 42(3-4): 205-10, 2005 May 25.
Article in English | MEDLINE | ID: mdl-15893220

ABSTRACT

With its good properties of biocompatibility and bioactivity hydroxyapatite (HA) is highly used as bone substitutes and as coatings on metallic prostheses. In order to improve the bioactive properties of HA, we have elaborated Zn2+ doped hydroxyapatite. Zn2+ ions substitute for Ca2+ cations in the HA structure and four Zn concentrations (Zn/Zn+Ca) were prepared at 0.5, 1, 2 and 5 at.%. To study physico-chemical reactions at the materials periphery, we immersed the bioceramics into biological fluids for intervals from 1 day to 20 days. The surface changes were studied at the nanometer scale by scanning transmission electron microscopy associated with energy dispersive X-ray spectroscopy. After 20 days of immersion, we observed the formation of a calcium-phosphate layer at the periphery of the HA doped with 5% zinc. This layer contains magnesium and its thickness was around 200 nm. Formation of this Ca-P-Mg layer represents the bioactive properties of 5% Zn-substituted hydroxyapatite. This biologically active layer improves the properties of HA and will permit a chemical bond between the ceramic and bone.


Subject(s)
Body Fluids/chemistry , Hydroxyapatites/chemistry , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Zinc/chemistry , Calcium/chemistry , Chemical Phenomena , Chemistry, Physical , Phosphorus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...