Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Lung Cancer ; 179: 107180, 2023 05.
Article in English | MEDLINE | ID: mdl-36989612

ABSTRACT

OBJECTIVES: E-cigarettes are the most commonly used nicotine containing products among youth. In vitro studies support the potential for e-cigarettes to cause cellular stress in vivo; however, there have been no studies to address whether exposure to e-liquid aerosols can induce cell transformation, a process strongly associated with pre-malignancy. We examined whether weekly exposure of human bronchial epithelial cell (HBEC) lines to e-cigarette aerosols would induce transformation and concomitant changes in gene expression and promoter hypermethylation. MATERIALS AND METHODS: An aerosol delivery system exposed three HBEC lines to unflavored e-liquid with 1.2% nicotine, 3 flavored products with nicotine, or the Kentucky reference cigarette once a week for 12 weeks. Colony formation in soft agar, RNA-sequencing, and the EPIC Beadchip were used to evaluate transformation, genome-wide expression and methylation changes. RESULTS: Jamestown e-liquid aerosol induced transformation of HBEC2 and HBEC26, while unflavored and Blue Pucker transformed HBEC26. Cigarette smoke aerosol transformed HBEC4 and HBEC26 at efficiencies up to 3-fold greater than e-liquids. Transformed clones exhibited extensive reprogramming of the transcriptome with common and distinct gene expression changes observed between the cigarette and e-liquids. Transformation by e-liquids induced alterations in canonical pathways implicated in lung cancer that included axonal guidance and NRF2. Gene methylation, while prominent in cigarette-induced transformed clones, also affected hundreds of genes in HBEC2 transformed by Jamestown. Many genes with altered expression or epigenetic-mediated silencing were also affected in lung tumors from smokers. CONCLUSIONS: These studies show that exposure to e-liquid aerosols can induce a pre-malignant phenotype in lung epithelial cells. While the Food and Drug Administration banned the sale of flavored cartridge-based electric cigarettes, consumers switched to using flavored products through other devices. Our findings clearly support expanding studies to evaluate transformation potency for the major categories of e-liquid flavors to better inform risk from these complex mixtures.


Subject(s)
Electronic Nicotine Delivery Systems , Lung Neoplasms , Tobacco Products , Humans , Adolescent , Nicotine/metabolism , Lung Neoplasms/pathology , Respiratory Aerosols and Droplets , Epithelial Cells , Cell Transformation, Neoplastic/pathology
2.
Br J Cancer ; 122(8): 1194-1204, 2020 04.
Article in English | MEDLINE | ID: mdl-32103148

ABSTRACT

BACKGROUND: Epigenetic therapy through demethylation of 5-methylcytosine has been largely ineffective in treating lung cancer, most likely due to poor tissue distribution with oral or subcutaneous delivery of drugs such as 5-azacytidine (5AZA). An inhalable, stable dry powder formulation of 5AZA was developed. METHODS: Pharmacokinetics of inhaled dry powder and aqueous formulations of 5AZA were compared to an injected formulation. Efficacy studies and effect of therapy on the epigenome were conducted in an orthotopic rat lung cancer model for inhaled formulations. RESULTS: Inhaled dry powder 5AZA showed superior pharmacokinetic properties in lung, liver, brain and blood compared to the injected formulation and for all tissues except lung compared to an inhaled aqueous formulation. Only dry powder 5AZA was detected in brain (~4-h half-life). Inhaled dry powder was superior to inhaled aqueous 5AZA in reducing tumour burden 70-95%. Superiority of inhaled 5AZA dry powder was linked to effectively reprogramming the cancer genome through demethylation and gene expression changes in cancer signalling and immune pathways. CONCLUSIONS: These findings could lead to widespread use of this drug as the first inhaled dry powder therapeutic for treating local and metastatic lung cancer, for adjuvant therapy, and in combination with immunotherapy to improve patient survival.


Subject(s)
Azacitidine/administration & dosage , Lung Neoplasms/drug therapy , Administration, Inhalation , Animals , Antigens, Neoplasm/analysis , Azacitidine/pharmacokinetics , Demethylation , Drug Compounding , Epigenome , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Powders , Rats , Rats, Sprague-Dawley , Xenograft Model Antitumor Assays
3.
Cancer Res ; 79(8): 1758-1768, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30622117

ABSTRACT

The role of transcriptional regulator ten-eleven translocation methylcytosine dioxygenease 1 (TET1) has not been well characterized in lung cancer. Here we show that TET1 is overexpressed in adenocarcinoma and squamous cell carcinomas. TET1 knockdown reduced cell growth in vitro and in vivo and induced transcriptome reprogramming independent of its demethylating activity to affect key cancer signaling pathways. Wild-type p53 bound the TET1 promoter to suppress transcription, while p53 transversion mutations were most strongly associated with high TET1 expression. Knockdown of TET1 in p53-mutant cell lines induced senescence through a program involving generalized genomic instability manifested by DNA single- and double-strand breaks and induction of p21 that was synergistic with cisplatin and doxorubicin. These data identify TET1 as an oncogene in lung cancer whose gain of function via loss of p53 may be exploited through targeted therapy-induced senescence. SIGNIFICANCE: These studies identify TET1 as an oncogene in lung cancer whose gain of function following loss of p53 may be exploited by targeted therapy-induced senescence.See related commentary by Kondo, p. 1751.


Subject(s)
Lung Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Cellular Senescence , Gene Expression Regulation, Neoplastic , Humans , Mixed Function Oxygenases , Proto-Oncogene Proteins
4.
Drug Deliv ; 25(1): 1127-1136, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29779406

ABSTRACT

Intravenous (IV) topotecan is approved for the treatment of various malignancies including lung cancer but its clinical use is greatly undermined by severe hematopoietic toxicity. We hypothesized that inhalation delivery of topotecan would increase local exposure and efficacy against lung cancer while reducing systemic exposure and toxicity. These hypotheses were tested in a preclinical setting using a novel inhalable formulation of topotecan against the standard IV dose. Respirable dry-powder of topotecan was manufactured through spray-drying technology and the pharmacokinetics of 0.14 and 0.79 mg/kg inhalation doses were compared with 0.7 mg/kg IV dose. The efficacy of four weekly treatments with 1 mg/kg inhaled vs. 2 mg/kg IV topotecan were compared to untreated control using an established orthotopic lung cancer model for a fast (H1975) and moderately growing (A549) human lung tumors in the nude rat. Inhalation delivery increased topotecan exposure of lung tissue by approximately 30-fold, lung and plasma half-life by 5- and 4-folds, respectively, and reduced the maximum plasma concentration by 2-fold than the comparable IV dose. Inhaled topotecan improved the survival of rats with the fast-growing lung tumors from 7 to 80% and reduced the tumor burden of the moderately-growing lung tumors over 5- and 10-folds, respectively, than the 2-times higher IV topotecan and untreated control (p < .00001). These results indicate that inhalation delivery increases topotecan exposure of lung tissue and improves its efficacy against lung cancer while also lowering the effective dose and maximum systemic concentration that is responsible for its dose-limiting toxicity.


Subject(s)
Lung Neoplasms/drug therapy , Topotecan/administration & dosage , A549 Cells , Administration, Inhalation , Administration, Intravenous/methods , Animals , Dry Powder Inhalers/methods , Humans , Lung/drug effects , Male , Particle Size , Powders/administration & dosage , Rats , Rats, Nude
5.
Int J Cancer ; 135(9): 2223-31, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-24668305

ABSTRACT

The DNA methyltransferase (DNMT) inhibitor vidaza (5-Azacytidine) in combination with the histone deacetylase inhibitor entinostat has shown promise in treating lung cancer and this has been replicated in our orthotopic lung cancer model. However, the effectiveness of DNMT inhibitors against solid tumors is likely impacted by their limited stability and rapid inactivation by cytidine deaminase (CDA) in the liver. These studies were initiated to test the efficacy of SGI-110, a dinucleotide containing decitabine that is resistant to deamination by CDA, as a single agent and in combination with entinostat. Evaluation of in vivo plasma concentrations and pharmacokinetic properties of SGI-110 showed rapid conversion to decitabine and a plasma half-life of 4 hr. SGI-110 alone or in combination with entinostat reduced tumor burden of a K-ras/p53 mutant lung adenocarcinoma cell line (Calu6) engrafted orthotopically in nude rats by 35% and 56%, respectively. SGI-110 caused widespread demethylation of more than 300 gene promoters and microarray analysis revealed expression changes for 212 and 592 genes with SGI-110 alone or in combination with entinostat. Epigenetic therapy also induced demethylation and expression of cancer testis antigen genes that could sensitize tumor cells to subsequent immunotherapy. In the orthotopically growing tumors, highly significant gene expression changes were seen in key cancer regulatory pathways including induction of p21 and the apoptotic gene BIK. Moreover, SGI-110 in combination with entinostat caused widespread epigenetic reprogramming of EZH2-target genes. These preclinical in vivo findings demonstrate the clinical potential of SGI-110 for reducing lung tumor burden through reprogramming the epigenome.


Subject(s)
Antineoplastic Agents/therapeutic use , Azacitidine/analogs & derivatives , Benzamides/therapeutic use , Epigenesis, Genetic/drug effects , Lung Neoplasms/genetics , Lung Neoplasms/prevention & control , Pyridines/therapeutic use , Tumor Burden/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols , Azacitidine/therapeutic use , Biomarkers, Tumor/genetics , Gene Expression Profiling , Immunologic Factors/therapeutic use , Lung Neoplasms/pathology , Male , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , Rats , Rats, Nude , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
6.
PLoS One ; 7(4): e34850, 2012.
Article in English | MEDLINE | ID: mdl-22496870

ABSTRACT

Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190) and 23% breast (n = 80) tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05). These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43%) than lung (5%) cancer, whereas TOX3 was frequently methylated in lung (58%) than breast (30%) tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.


Subject(s)
Breast Neoplasms/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , HMGB Proteins/genetics , High Mobility Group Proteins/genetics , Lung Neoplasms/genetics , Neoplasm Proteins/genetics , Receptors, Progesterone/genetics , Apoptosis Regulatory Proteins , Base Sequence , CpG Islands , DNA Methylation , Female , Humans , Lung/drug effects , Lung/metabolism , Male , Molecular Sequence Data , Sequence Analysis, DNA , Trans-Activators
7.
Cancer Res ; 71(2): 454-62, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21224363

ABSTRACT

Epigenetic therapy for solid tumors could benefit from an in vivo model that defines tumor characteristics of responsiveness and resistance to facilitate patient selection. Here we report that combining the histone deacetylase inhibitor entinostat with the demethylating agent vidaza profoundly affected growth of K-ras/p53 mutant lung adenocarcinomas engrafted orthotopically in immunocompromised nude rats by targeting and ablating pleomorphic cells that occupied up to 75% of the tumor masses. A similar reduction in tumor burden was seen with epigenetic therapy in K-ras or EGFR mutant tumors growing orthotopically. Increased expression of proapoptotic genes and the cyclin-dependent kinase inhibitor p21 was seen. Hundreds of genes were demethylated highlighted by the reexpression of polycomb-regulated genes coding for transcription factor binding proteins and the p16 gene, a key regulator of the cell cycle. Highly significant gene expression changes were seen in key regulatory pathways involved in cell cycle, DNA damage, apoptosis, and tissue remodeling. These findings show the promise for epigenetic therapy in cancer management and provide an orthotopic lung cancer model that can assess therapeutic efficacy and reprogramming of the epigenome in tumors harboring different genetic and epigenetic profiles to guide use of these drugs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Azacitidine/administration & dosage , Benzamides/administration & dosage , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation/drug effects , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Histone Deacetylase Inhibitors/administration & dosage , Humans , Male , Pyridines/administration & dosage , Rats , Signal Transduction/drug effects , Signal Transduction/genetics , Xenograft Model Antitumor Assays
8.
Carcinogenesis ; 30(12): 2023-30, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19917631

ABSTRACT

Death-associated protein kinase (DAPK), a mediator of apoptotic systems, is silenced by promoter hypermethylation in lung and breast tumors. This gene has a CpG island extending 2500 bp from the translational start site; however, studies characterizing its transcriptional regulation have not been conducted. Two transcripts for DAPK were identified that code for a single protein, while being regulated by two promoters. The previously identified DAPK transcript designated as exon 1 transcript was expressed at levels 3-fold greater than the alternate exon 1b transcript. Deletion constructs of promoter 1 identified a 332 bp region containing a functional CP2-binding site important for expression of the exon 1 transcript. While moderate reporter activity was seen in promoter 2, the region comprising intron 1 and containing a HNF3B-binding site sustained expression of the alternate transcript. Sequencing the DAPK CpG island in tumor cell lines revealed dense, but heterogenous methylation of CpGs that blocked access of the CP2 and HNF3B proteins that in turn, was associated with loss of transcription that was restored by treatment with 5-aza-2'-deoxycytidine. Prevalences were similar for methylation of promoter 1 and 2 and intron 1 in lung tumors, but significantly greater in promoter 2 and intron 1 in breast tumors, indicative of tissue-specific differences in silencing these two transcripts. These studies show for the first time dual promoter regulation of DAPK, a tumor suppressor gene silenced in many cancers, and substantiate the importance of screening for silencing of both transcripts in tumors.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , DNA Methylation , Gene Expression Regulation, Neoplastic , Gene Silencing , Neoplasms/genetics , Neoplasms/metabolism , Promoter Regions, Genetic , Apoptosis , Base Sequence , Binding Sites , Cell Line, Tumor , CpG Islands , Death-Associated Protein Kinases , Gene Deletion , Humans , Molecular Sequence Data , RNA, Messenger/metabolism
9.
Carcinogenesis ; 30(12): 2095-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19861651

ABSTRACT

There is a critical need to identify efficacious chemopreventive agents for lung cancer that can be taken chronically with no side effects and whose mechanisms of action do not involve genotoxicity that could drive, rather than impede, cancer progression. We evaluated the ability of a chemopreventive cocktail that included selenium (antioxidant), rosiglitazone (peroxisome proliferator-activated receptor gamma agonist), sodium phenylbutyrate or valproic acid (histone deacetylase inhibitors) and hydralazine (cytosine-demethylating agent) to prevent the progression of lung cancer in A/J mice treated with NNK. Agents were administered alone or in various combinations. Effects of the chemopreventive agents were quantified based on the proportion of hyperplasias and adenomas within the mouse lung. Significant effects on tumor progression were seen in all treatment groups that included rosiglitazone as reflected by a 47-57% increase in number of hyperplasias and a 10-30% decrease in adenomas. Cell proliferation was also reduced in these treatment groups by approximately 40%. Interestingly, while treatment with rosiglitazone alone did not significantly affect lesion size, striking effects were seen in the combination therapy group that included sodium phenylbutyrate, with the volume of hyperplasias and adenomas decreasing by 40 and 77%, respectively. These studies demonstrate for the first time that chronic in vivo administration of rosiglitazone, used in the management of diabetes mellitus, can significantly block the progression of premalignant lung cancer in the A/J mouse model.


Subject(s)
Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Thiazolidinediones/pharmacology , Adenoma/drug therapy , Adenoma/pathology , Animals , Antioxidants/metabolism , Cell Line, Tumor , Disease Progression , Female , Histone Deacetylases/metabolism , Humans , Hypoglycemic Agents/pharmacology , Immunohistochemistry/methods , Lung Neoplasms/metabolism , Mice , Neoplasm Invasiveness , PPAR gamma/metabolism , Rosiglitazone
10.
Carcinogenesis ; 26(11): 1999-2009, 2005 Nov.
Article in English | MEDLINE | ID: mdl-15944214

ABSTRACT

Although cigarette smoke has been epidemiologically associated with lung cancer in humans for many years, animal models of cigarette smoke-induced lung cancer have been lacking. This study demonstrated that life time whole body exposures of female B6C3F1 mice to mainstream cigarette smoke at 250 mg total particulate matter/m(3) for 6 h per day, 5 days a week induces marked increases in the incidence of focal alveolar hyperplasias, pulmonary adenomas, papillomas and adenocarcinomas. Cigarette smoke-exposed mice (n = 330) had a 10-fold increase in the incidence of hyperplastic lesions, and a 4.6-fold (adenomas and papillomas), 7.25-fold (adenocarcinomas) and 5-fold (metastatic pulmonary adenocarcinomas) increase in primary lung neoplasms compared with sham-exposed mice (n = 326). Activating point mutations in codon 12 of the K-ras gene were identified at a similar rate in tumors from sham-exposed mice (47%) and cigarette smoke-exposed mice (60%). The percentages of transversion and transition mutations were similar in both the groups. Hypermethylation of the death associated protein (DAP)-kinase and retinoic acid receptor (RAR)-beta gene promoters was detected in tumors from both sham- and cigarette smoke-exposed mice, with a tendency towards increased frequency of RAR-beta methylation in the tumors from the cigarette smoke-exposed mice. These results emphasize the importance of the activation of K-ras and silencing of DAP-kinase and RAR-beta in lung cancer development, and confirm the relevance of this mouse model for studying lung tumorigenesis.


Subject(s)
DNA Methylation , Gene Silencing/drug effects , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung/drug effects , Smoking/adverse effects , Adenocarcinoma/chemically induced , Adenocarcinoma/genetics , Adenocarcinoma/secondary , Adenoma/chemically induced , Adenoma/genetics , Adenoma/pathology , Administration, Inhalation , Animals , Apoptosis Regulatory Proteins , Body Weight , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Cell Proliferation/drug effects , Death-Associated Protein Kinases , Female , Genes, ras/drug effects , Hyperplasia/chemically induced , Hyperplasia/genetics , Hyperplasia/pathology , Incidence , Lung/metabolism , Lung/pathology , Lung Neoplasms/pathology , Mice , Mice, Inbred Strains , Organ Size , Papilloma/chemically induced , Papilloma/genetics , Papilloma/pathology , Point Mutation , Promoter Regions, Genetic , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/pathology , Receptors, Retinoic Acid/genetics , Survival Rate
11.
Cancer Res ; 63(15): 4620-5, 2003 Aug 01.
Article in English | MEDLINE | ID: mdl-12907641

ABSTRACT

Aberrant methylation of 5'CpG islands is a key epigenetic event in many human cancers. A PCR-based technique of methylated CpG island amplification followed by representational difference analysis was used to identify genes methylated in cancer. Two of the CpG islands identified mapped to the 5' untranslated region of the PAX5 alpha and beta genes. These genes, located on chromosome 9p13, are transcribed from two distinct promoters and form two alternative first exons that are subsequently spliced to the common exons 2-10. The resulting splice variants encode two distinct transcription factors important in cell differentiation and embryonic development. Examination of the methylation status of each gene using methylation-specific PCR revealed that both genes are methylated in approximately 65% of breast and lung tumors. Bisulfite sequencing revealed dense methylation patterns within each 5'CpG island, strongly correlating with transcriptional silencing. Expression in cell lines with dense methylation of either the PAX5 alpha or beta promoter region was restored after treatment with the demethylating agent 5-Aza-2'-deoxycytidine. The PAX5 beta gene encodes for the transcription factor B cell-specific activating protein that, in turn, directly regulates CD19, a gene shown to negatively control cell growth. A strong association was observed between PAX5 beta methylation and loss of expression of the CD19 gene demonstrating that inactivation of the PAX5 beta gene likely contributes to neoplastic development by inhibiting growth regulation through effects on CD19 gene expression. Recent studies have demonstrated the importance of PAX5 gene alterations in human cancer. Our results are the first to identify aberrant promoter methylation as a common mechanism for dysregulation of these genes in solid tumors.


Subject(s)
Azacitidine/analogs & derivatives , Breast Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , DNA-Binding Proteins/genetics , Lung Neoplasms/genetics , Transcription Factors/genetics , Azacitidine/pharmacology , Breast Neoplasms/metabolism , Carcinoma, Squamous Cell/metabolism , CpG Islands , DNA Methylation , Decitabine , Gene Expression/drug effects , Humans , Lung Neoplasms/metabolism , Microsatellite Repeats/genetics , PAX5 Transcription Factor , Promoter Regions, Genetic , Tumor Cells, Cultured
12.
Cancer Res ; 62(8): 2370-7, 2002 Apr 15.
Article in English | MEDLINE | ID: mdl-11956099

ABSTRACT

Recent studies from our laboratory suggest that gene-specific methylation changes in sputum could be good intermediate markers for the early detection of lung cancer and defining the efficacy of chemopreventive interventions. The purpose of our study was to determine the prevalence for aberrant promoter methylation of the p16, O(6)-methylguanine-DNA methyltransferase (MGMT), death-associated protein (DAP) kinase, and Ras effector homologue (RASSFIA) genes in nonmalignant bronchial epithelial cells from current and former smokers in a hospital-based, case control study of lung cancer. The relationship between loss of heterozygosity, at 9p and p16 methylation in bronchial epithelium and the prevalence for methylation of these four genes in sputum from cancer-free, current and former smokers were also determined. Aberrant promoter methylation of p16 was seen in at least one bronchial epithelial site from 44% of cases and controls. Methylation of the DAP kinase gene was seen in only 1 site from 5 cases and 4 controls, whereas methylation of the RASSFIA was not detected in the bronchial epithelium. Promoter methylation for p16 and DAP kinase was seen as frequently in bronchial epithelium from current smokers as from former smokers. No promoter methylation of these genes was detected in bronchial epithelium from never-smokers. Methylation of the p16 gene was detected in sputum from 23 of 66 controls. DAP kinase gene promoter methylation was also seen in sputum from 16 controls, and 8 of these subjects were positive for p16 methylation. Methylation of the MGMT gene was seen in sputum from 9 controls, whereas RASSFIA promoter methylation was only seen in 2 controls. The correlation between p16 status in the bronchial epithelium obtained from lung lobes that did not contain the primary tumor and the tumor itself was examined. Seventeen of 18 tumors (94%) showed an absolute concordance, being either methylated in the tumor and at least 1 bronchial epithelial site, or unmethylated in both tumor and bronchial epithelium. These results indicate that aberrant promoter hypermethylation of the p16 gene, and to a lesser extent, DAP kinase, occurs frequently in the bronchial epithelium of lung cancer cases and cancer-free controls and persists after smoking cessation. The strong association seen between p16 methylation in the bronchial epithelium and corresponding primary tumor substantiates that inactivation of this gene, although not transforming by itself, is likely permissive for the acquisition of additional genetic and epigenetic changes leading to lung cancer.


Subject(s)
Bronchi/physiology , DNA Methylation , Genes, Tumor Suppressor , Lung Neoplasms/genetics , Promoter Regions, Genetic , Smoking/genetics , Sputum/metabolism , Tumor Suppressor Proteins , Adult , Aged , Aged, 80 and over , Apoptosis Regulatory Proteins , Bronchi/metabolism , Bronchi/ultrastructure , Calcium-Calmodulin-Dependent Protein Kinases/genetics , Case-Control Studies , Cells, Cultured , Chromosomes, Human, Pair 9 , Death-Associated Protein Kinases , Epithelial Cells/metabolism , Epithelial Cells/physiology , Epithelial Cells/ultrastructure , Female , Genes, p16/physiology , Humans , Loss of Heterozygosity , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Male , Middle Aged , Neoplasm Proteins/genetics , O(6)-Methylguanine-DNA Methyltransferase/genetics , Smoking/adverse effects , Smoking/metabolism , Sputum/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...