Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 28(19): 5708-5725, 2022 10.
Article in English | MEDLINE | ID: mdl-35848527

ABSTRACT

Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change.


Subject(s)
Aquatic Organisms , Ecosystem , Climate Change , Mediterranean Sea
2.
Environ Pollut ; 224: 336-351, 2017 May.
Article in English | MEDLINE | ID: mdl-28238365

ABSTRACT

The Biocoenosis of Well Sorted Fine Sands (WSFS) (SFBC, Sables Fins Bien Calibrés in French) is a Mediterranean community very well delimited by bathymetry (2-25 m) and sedimentology (>90% of fine sand) occurring in zones with relatively strong hydrodynamics. In this study focused on sites located along the Algerian, French, Italian and Spanish coasts of the Western Basin of the Mediterranean Sea (WBMS) we aim to compare the structure, ecological status and diversity of the macrofauna of the WSFS and examine the effects of recent human pressures on the state of this shallow macrobenthic community. We assess the ecological status and functioning of these WSFS using three categories of benthic indices: a) five indices based on classification of species into ecological groups, AMBI, BO2A, BPOFA, IQ and IP, b) the ITI index based on classification of species in trophic groups, and c) the Shannon H' index, and the Biological Traits Analysis (BTA), which is an alternative method to relative taxon composition analysis and integrative indices. Cluster analyses show that each zone show a particular taxonomic richness and dominant species. The seven benthic indices reveal that the macrobenthos of the WSFS of the four coastal zones show good or high Quality Status, except for one location on the Algerian coast (the Djendjen site) in 1997. BTA highlights the presence of three groups of species: 1) typical characteristic species; 2) indicator species of enrichment of fine particles and organic matter, and 3) coarse sand species which are accessorily found on fine sand. Finally, the WSFS which are naturally subject to regular natural physical perturbations show a high resilience after human pressures but are very sensitive to changes in the input of organic matter.


Subject(s)
Aquatic Organisms/classification , Biodiversity , Ecology , Ecosystem , Environmental Monitoring/methods , Invertebrates/classification , Algeria , Animals , France , Italy , Mediterranean Sea , Spain
3.
Mar Pollut Bull ; 60(11): 1969-77, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20825952

ABSTRACT

Between 1995 and 2001, the soft-bottom communities along the 1180 km of the Algerian coast were sampled in nine gulfs and 12 harbours, providing a total of 655 samples. Eight macrozoobenthos-based biotic indices (S, N, H', BQI, AMBI, BENTIX, BO2A and ITI) were selected to describe the general patterns of the coastal water quality status and to establish a quality diagnosis for the different zones subjected to anthropogenic pressure (e.g., harbour construction, industrial and urban pollution). Reference values were determined for each of the eight indices selected by analyzing the indices' parameter distribution. The Ecological Quality Ratio (EQR) was estimated for each index, resulting in an EQR Mean Score and an EQR Bad Score. From these EQR, we defined an EQS for each sample. The agreement between these EQS was analysed using the Kappa method in order to propose a survey strategy for the Algerian coastal waters that would take into account the soft-bottom biological compartment. The results clearly indicate that high and good quality assessments are prevalent in the gulfs, while quality assessments in harbours vary greatly from bad to good. The effect of pollution observed in the harbours can be classified in two main groups, according to when they were constructed and their relative degree of openness to the sea, which permits better water circulation and probably dilutes the pollution.


Subject(s)
Aquatic Organisms , Ecosystem , Water Pollution/analysis , Algeria , Animals , Environmental Monitoring , Facility Design and Construction , Geologic Sediments , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...