Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(27): 5362-5373, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38935631

ABSTRACT

The thermal decomposition of perfluorooctanoic acid (PFOA) under oxidative conditions was investigated using air (O2) and N2O as oxidants over temperatures ranging from 400 to 1000 °C in an α-alumina reactor. In the presence of air, PFOA was found to decompose into perfluorohept-1-ene (C7F14) and perfluoroheptanoyl fluoride (C7F14O) in addition to HF, CO, and CO2. At temperatures above 800 °C, both C7F14 and C7F14O were no longer detected. A comprehensive analysis of the reaction mechanisms through quantum chemical analysis and kinetic modeling in combination with experimental observations was utilized to identify key reaction pathways. Quantum chemical analysis led to the conclusion that oxygen atoms are crucial in decomposing perfluoroalk-1-enes, especially the stable perfluorohept-1-ene (C7F14). Under oxidative conditions, it was found that significant quantities of C2F6 and CF4 were formed. Further quantum chemical analysis suggests that the O atoms facilitate the formation of volatile fluorinated compounds (VFCs) such as tetrafluoromethane (CF4) and hexafluoroethane (C2F6), particularly at higher temperatures. By elucidating these key reactions, an improved understanding of the potential formation products of incomplete combustion (PICs) or products of incomplete destruction (PIDs) is made.

2.
Environ Sci Process Impacts ; 22(10): 2084-2094, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32909592

ABSTRACT

Chlorpyrifos (CPF) is a widely used pesticide; however, limited experimental work has been completed on its thermal decomposition. CPF is known to decompose into 3,5,6-trichloro-2-pyridinol (TCpyol) together with ethylene and HOPOS. Under oxidative conditions TCpyol can decompose into the dioxin-like 2,3,7,8-tetrachloro-[1,4]-dioxinodipyridine (TCDDPy). With CPF on the cusp of being banned in several jurisdictions worldwide, the question might arise as to how to safely eliminate large stockpiles of this pesticide. Thermal methods such as incineration or thermal desorption of pesticide-contaminated soils are often employed. To assess the safety of thermal methods, information about the toxicants arising from thermal treatment is essential. The present flow reactor study reports the products detected under inert and oxidative conditions from the decomposition of CPF representative of thermal treatments and of wildfires in CPF-contaminated vegetation. Ethylene and TCpyol are the initial products formed at temperatures between 550 and 650 °C, although the detection of HOPOS as a reaction product has proven to be elusive. During pyrolysis of CPF in an inert gas, the dominant sulfur-containing product detected from CPF is carbon disulfide. Quantum chemical analysis reveals that ethylene and HOPOS undergo a facile reaction to form thiirane (c-C2H4S) which subsequently undergoes ring opening reactions to form precursors of CS2. At elevated temperatures (>650 °C), TCpyol undergoes both decarbonylation and dehydroxylation reactions together with decomposition of its primary product, TCpyol. A substantial number of toxicants is observed, including HCN and several nitriles, including cyanogen. No CS2 is observed under oxidative conditions - sulfur dioxide is the fate of S in oxidation of CPF, and quantum chemical studies show that SO2 formation is initiated by the reaction between HOPOS and O2. The range of toxicants produced in thermal decomposition of CPF is summarised.


Subject(s)
Chlorpyrifos , Dioxins , Insecticides , Pesticides , Polychlorinated Dibenzodioxins , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...