Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762898

ABSTRACT

Heme is produced in plants via a plastid-localized metabolic pathway and is subsequently distributed to all cellular compartments. In addition to covalently and non-covalently bound heme, a comparatively small amount of free heme that is not associated with protein is available for incorporation into heme-dependent proteins in all subcellular compartments and for regulatory purposes. This "labile" fraction may also be toxic. To date, the distribution of the free heme pool in plant cells remains poorly understood. Several fluorescence-based methods for the quantification of intracellular free heme have been described. For this study, we used the previously described genetically encoded heme sensor 1 (HS1) to measure the relative amounts of heme in different plant subcellular compartments. In a proof of concept, we manipulated heme content using a range of biochemical and genetic approaches and verified the utility of HS1 in different cellular compartments of Arabidopsis (Arabidopsis thaliana) and tobacco (N. tabacum and N. benthamiana) plants transformed either transiently or stably with HS1 and HS1(M7A), a variant with lower affinity for heme. This approach makes it possible to trace the distribution and dynamics of free heme and provides relevant information about its mobilization. The application of these heme sensors will create opportunities to explore and validate the importance of free heme in plant cells and to identify mutants that alter the subcellular allocation of free heme.

2.
Plant Physiol ; 195(1): 713-727, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38330186

ABSTRACT

Plant tetrapyrrole biosynthesis (TPB) takes place in plastids and provides the chlorophyll and heme required for photosynthesis and many redox processes throughout plant development. TPB is strictly regulated, since accumulation of several intermediates causes photodynamic damage and cell death. Protoporphyrinogen oxidase (PPO) catalyzes the last common step before TPB diverges into chlorophyll and heme branches. Land plants possess two PPO isoforms. PPO1 is encoded as a precursor protein with a transit peptide, but in most dicotyledonous plants PPO2 does not possess a cleavable N-terminal extension. Arabidopsis (Arabidopsis thaliana) PPO1 and PPO2 localize in chloroplast thylakoids and envelope membranes, respectively. Interestingly, PPO2 proteins in Amaranthaceae contain an N-terminal extension that mediates their import into chloroplasts. Here, we present multiple lines of evidence for dual targeting of PPO2 to thylakoid and envelope membranes in this clade and demonstrate that PPO2 is not found in mitochondria. Transcript analyses revealed that dual targeting in chloroplasts involves the use of two transcription start sites and initiation of translation at different AUG codons. Among eudicots, the parallel accumulation of PPO1 and PPO2 in thylakoid membranes is specific for the Amaranthaceae and underlies PPO2-based herbicide resistance in Amaranthus species.


Subject(s)
Herbicides , Plant Proteins , Protoporphyrinogen Oxidase , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism , Herbicides/pharmacology , Plant Proteins/metabolism , Plant Proteins/genetics , Plastids/genetics , Plastids/metabolism , Gene Expression Regulation, Plant , Amaranthus/genetics , Amaranthus/drug effects , Chloroplasts/metabolism , Chloroplasts/genetics , Herbicide Resistance/genetics , Arabidopsis/genetics , Thylakoids/metabolism
3.
J Exp Bot ; 75(7): 2027-2045, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38070484

ABSTRACT

The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Protochlorophyllide/metabolism , Aminolevulinic Acid/metabolism , Arabidopsis/genetics , Aldehyde Oxidoreductases/genetics , Chlorophyll/metabolism , Tetrapyrroles/metabolism
4.
Plant Direct ; 7(10): e534, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37886682

ABSTRACT

Fluctuating light intensity challenges fluent photosynthetic electron transport in plants, inducing photoprotection while diminishing carbon assimilation and growth, and also influencing photosynthetic signaling for regulation of gene expression. Here, we employed in vivo chlorophyll-a fluorescence and P700 difference absorption measurements to demonstrate the enhancement of photoprotective energy dissipation of both photosystems in wild-type Arabidopsis thaliana after 6 h exposure to fluctuating light as compared with constant light conditions. This acclimation response to fluctuating light was hampered in a triple mutant lacking the thylakoid ion transport proteins KEA3, VCCN1, and CLCe, leading to photoinhibition of photosystem I. Transcriptome analysis revealed upregulation of genes involved in biotic stress and defense responses in both genotypes after exposure to fluctuating as compared with constant light, yet these responses were demonstrated to be largely upregulated in triple mutant already under constant light conditions compared with wild type. The current study illustrates the rapid acclimation of plants to fluctuating light, including photosynthetic, transcriptomic, and metabolic adjustments, and highlights the connection among thylakoid ion transport, photosynthetic energy balance, and cell signaling.

5.
Plant J ; 115(6): 1583-1598, 2023 09.
Article in English | MEDLINE | ID: mdl-37269173

ABSTRACT

Protochlorophyllide oxidoreductase (POR), which converts protochlorophyllide into chlorophyllide, is the only light-dependent enzyme in chlorophyll biosynthesis. While its catalytic reaction and importance for chloroplast development are well understood, little is known about the post-translational control of PORs. Here, we show that cpSRP43 and cpSRP54, two components of the chloroplast signal recognition particle pathway, play distinct roles in optimizing the function of PORB, the predominant POR isoform in Arabidopsis. The chaperone cpSRP43 stabilizes the enzyme and provides appropriate amounts of PORB during leaf greening and heat shock, whereas cpSRP54 enhances its binding to the thylakoid membrane, thereby ensuring adequate levels of metabolic flux in late chlorophyll biosynthesis. Furthermore, cpSRP43 and the DnaJ-like protein CHAPERONE-LIKE PROTEIN of POR1 concurrently act to stabilize PORB. Overall, these findings enhance our understanding of the coordinating role of cpSPR43 and cpSRP54 in the post-translational control of chlorophyll synthesis and assembly of photosynthetic chlorophyll-binding proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oxidoreductases Acting on CH-CH Group Donors , Protochlorophyllide/metabolism , Chloroplasts/metabolism , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Arabidopsis/metabolism , Thylakoids/metabolism , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Signal Recognition Particle/metabolism
6.
Cells ; 12(12)2023 06 20.
Article in English | MEDLINE | ID: mdl-37371140

ABSTRACT

Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Photosynthesis/physiology , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Aminolevulinic Acid , Thioredoxins/metabolism , Chlorophyll/metabolism
7.
New Phytol ; 239(2): 624-638, 2023 07.
Article in English | MEDLINE | ID: mdl-37161708

ABSTRACT

During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Aminolevulinic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Ferrochelatase/genetics , Ferrochelatase/metabolism , Heme/metabolism , Protochlorophyllide/metabolism , Tetrapyrroles/metabolism
8.
Commun Biol ; 6(1): 529, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37193883

ABSTRACT

Using a mutant screen, we identified trehalose 6-phosphate phosphatase 1 (TSPP1) as a functional enzyme dephosphorylating trehalose 6-phosphate (Tre6P) to trehalose in Chlamydomonas reinhardtii. The tspp1 knock-out results in reprogramming of the cell metabolism via altered transcriptome. As a secondary effect, tspp1 also shows impairment in 1O2-induced chloroplast retrograde signalling. From transcriptomic analysis and metabolite profiling, we conclude that accumulation or deficiency of certain metabolites directly affect 1O2-signalling. 1O2-inducible GLUTATHIONE PEROXIDASE 5 (GPX5) gene expression is suppressed by increased content of fumarate and 2-oxoglutarate, intermediates in the tricarboxylic acid cycle (TCA cycle) in mitochondria and dicarboxylate metabolism in the cytosol, but also myo-inositol, involved in inositol phosphate metabolism and phosphatidylinositol signalling system. Application of another TCA cycle intermediate, aconitate, recovers 1O2-signalling and GPX5 expression in otherwise aconitate-deficient tspp1. Genes encoding known essential components of chloroplast-to-nucleus 1O2-signalling, PSBP2, MBS, and SAK1, show decreased transcript levels in tspp1, which also can be rescued by exogenous application of aconitate. We demonstrate that chloroplast retrograde signalling involving 1O2 depends on mitochondrial and cytosolic processes and that the metabolic status of the cell determines the response to 1O2.


Subject(s)
Chlamydomonas reinhardtii , Singlet Oxygen , Singlet Oxygen/metabolism , Chlamydomonas reinhardtii/genetics , Trehalose/metabolism , Aconitic Acid/metabolism , Aconitic Acid/pharmacology , Phosphates/metabolism
9.
Plant Cell Environ ; 46(8): 2376-2390, 2023 08.
Article in English | MEDLINE | ID: mdl-37254806

ABSTRACT

GATAs are evolutionarily conserved zinc-finger transcription factors from eukaryotes. In plants, GATAs can be subdivided into four classes, A-D, based on their DNA-binding domain, and into further subclasses based on additional protein motifs. B-GATAs with a so-called leucine-leucine-methionine (LLM)-domain can already be found in algae. In angiosperms, the B-GATA family is expanded and can be subdivided in to LLM- or HAN-domain B-GATAs. Both, the LLM- and the HAN-domain are conserved domains of unknown biochemical function. Interestingly, the B-GATA family in the liverwort Marchantia polymorpha and the moss Physcomitrium patens is restricted to one and four family members, respectively. And, in contrast to vascular plants, the bryophyte B-GATAs contain a HAN- as well as an LLM-domain. Here, we characterise mutants of the single B-GATA from Marchantia polymorpha. We reveal that this mutant has defects in thallus growth and in gemma formation. Transcriptomic studies uncover that the B-GATA mutant displays a constitutive high-light (HL) stress response, a phenotype that we then also confirm in mutants of Arabidopsis thaliana LLM-domain B-GATAs, suggesting that the B-GATAs have a protective role towards HL stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Marchantia , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , GATA Transcription Factors/genetics , GATA Transcription Factors/metabolism , Marchantia/genetics , Leucine
10.
Mol Plant ; 16(6): 1048-1065, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37202926

ABSTRACT

Chlorophylls and carotenoids are essential photosynthetic pigments. Plants spatiotemporally coordinate the needs of chlorophylls and carotenoids for optimal photosynthesis and fitness in response to diverse environmental and developmental cues. However, how the biosynthesis pathways of these two pigments are coordinated, particularly at posttranslational level to allow rapid control, remains largely unknown. Here, we report that the highly conserved ORANGE (OR) family proteins coordinate both pathways via posttranslationally mediating the first committed enzyme in each pathway. We demonstrate that OR family proteins physically interact with magnesium chelatase subunit I (CHLI) in chlorophyll biosynthesis pathway in addition to phytoene synthase (PSY) in carotenoid biosynthesis pathway and concurrently stabilize CHLI and PSY enzymes. We show that loss of OR genes hinders both chlorophyll and carotenoid biosynthesis, limits light-harvesting complex assembly, and impairs thylakoid grana stacking in chloroplasts. Overexpression of OR safeguards photosynthetic pigment biosynthesis and enhances thermotolerance in both Arabidopsis and tomato plants. Our findings establish a novel mechanism by which plants coordinate chlorophyll and carotenoid biosynthesis and provide a potential genetic target to generate climate-resilient crops.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chlorophyll/metabolism , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Carotenoids/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Molecular Chaperones/metabolism
11.
New Phytol ; 238(6): 2545-2560, 2023 06.
Article in English | MEDLINE | ID: mdl-36967598

ABSTRACT

Tetrapyrrole biosynthesis (TBS) is a dynamically and strictly regulated process. Disruptions in tetrapyrrole metabolism influence many aspects of plant physiology, including photosynthesis, programmed cell death (PCD), and retrograde signaling, thus affecting plant growth and development at multiple levels. However, the genetic and molecular basis of TBS is not fully understood. We report here PCD8, a newly identified thylakoid-localized protein encoded by an essential gene in Arabidopsis. PCD8 knockdown causes a necrotic phenotype due to excessive chloroplast damage. A burst of singlet oxygen that results from overaccumulated tetrapyrrole intermediates upon illumination is suggested to be responsible for cell death in the knockdown mutants. Genetic and biochemical analyses revealed that PCD8 interacts with ClpC1 and a number of TBS enzymes, such as HEMC, CHLD, and PORC of TBS. Taken together, our findings uncover the function of chloroplast-localized PCD8 and provide a new perspective to elucidate molecular mechanism of how TBS is finely regulated in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Tetrapyrroles/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Homeostasis
12.
Plant Physiol ; 192(2): 871-885, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36806676

ABSTRACT

All land plants encode 2 isoforms of protoporphyrinogen oxidase (PPO). While PPO1 is predominantly expressed in green tissues and its loss is seedling-lethal in Arabidopsis (Arabidopsis thaliana), the effects of PPO2 deficiency have not been investigated in detail. We identified 2 ppo2 T-DNA insertion mutants from publicly available collections, one of which (ppo2-2) is a knock-out mutant. While the loss of PPO2 did not result in any obvious phenotype, substantial changes in PPO activity were measured in etiolated and root tissues. However, ppo1 ppo2 double mutants were embryo-lethal. To shed light on possible functional differences between the 2 isoforms, PPO2 was overexpressed in the ppo1 background. Although the ppo1 phenotype was partially complemented, even strong overexpression of PPO2 was unable to fully compensate for the loss of PPO1. Analysis of subcellular localization revealed that PPO2 is found exclusively in chloroplast envelopes, while PPO1 accumulates in thylakoid membranes. Mitochondrial localization of PPO2 in Arabidopsis was ruled out. Since Arabidopsis PPO2 does not encode a cleavable transit peptide, integration of the protein into the chloroplast envelope must make use of a noncanonical import route. However, when a chloroplast transit peptide was fused to the N-terminus of PPO2, the enzyme was detected predominantly in thylakoid membranes and was able to fully complement ppo1. Thus, the 2 PPO isoforms in Arabidopsis are functionally equivalent but spatially separated. Their distinctive localizations within plastids thus enable the synthesis of discrete subpools of the PPO product protoporphyrin IX, which may serve different cellular needs.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Plastids/metabolism , Protein Isoforms/genetics , Protoporphyrinogen Oxidase/genetics , Protoporphyrinogen Oxidase/metabolism
13.
Plant Commun ; 4(1): 100511, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36575799

ABSTRACT

Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Anthocyanins , Proteomics , Heme/metabolism , DNA-Binding Proteins/genetics
14.
Front Plant Sci ; 14: 1294802, 2023.
Article in English | MEDLINE | ID: mdl-38317833

ABSTRACT

Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.

15.
Plant Cell ; 34(11): 4623-4640, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35972388

ABSTRACT

Tetrapyrroles play fundamental roles in crucial processes including photosynthesis, respiration, and catalysis. In plants, 5-aminolevulinic acid (ALA) is the common precursor of tetrapyrroles. ALA is synthesized from activated glutamate by the enzymes glutamyl-tRNA reductase (GluTR) and glutamate-1-semialdehyde aminotransferase (GSAAT). ALA synthesis is recognized as the rate-limiting step in this pathway. We aimed to explore the contribution of GSAAT to the control of ALA synthesis and the formation of a protein complex with GluTR. In Arabidopsis thaliana, two genes encode GSAAT isoforms: GSA1 and GSA2. A comparison of two GSA knockout mutants with the wild-type revealed the correlation of reduced GSAAT activity and ALA-synthesizing capacity in leaves with lower chlorophyll content. Growth and green pigmentation were more severely impaired in gsa2 than in gsa1, indicating the predominant role of GSAAT2 in ALA synthesis. Interestingly, GluTR accumulated to higher levels in gsa2 than in the wild-type and was mainly associated with the plastid membrane. We propose that the GSAAT content modulates the amount of soluble GluTR available for ALA synthesis. Several different biochemical approaches revealed the GSAAT-GluTR interaction through the assistance of GluTR-binding protein (GBP). A modeled structure of the tripartite protein complex indicated that GBP mediates the stable association of GluTR and GSAAT for adequate ALA synthesis.


Subject(s)
Aldehyde Oxidoreductases , Aminolevulinic Acid , Arabidopsis Proteins , Arabidopsis , Intramolecular Transferases , Transaminases , Aldehyde Oxidoreductases/metabolism , Aminolevulinic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Glutamates/metabolism , Tetrapyrroles/metabolism , Transaminases/genetics , Transaminases/metabolism , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism
16.
Plant J ; 111(4): 979-994, 2022 08.
Article in English | MEDLINE | ID: mdl-35694901

ABSTRACT

Chlorophyll (Chl) is made up of the tetrapyrrole chlorophyllide and phytol, a diterpenoid alcohol. The photosynthetic protein complexes utilize Chl for light harvesting to produce biochemical energy for plant development. However, excess light and adverse environmental conditions facilitate generation of reactive oxygen species, which damage photosystems I and II (PSI and PSII) and induce their turnover. During this process, Chl is released, and is thought to be recycled via dephytylation and rephytylation. We previously demonstrated that Chl recycling in Arabidopsis under heat stress is mediated by the enzymes chlorophyll dephytylase 1 (CLD1) and chlorophyll synthase (CHLG) using chlg and cld1 mutants. Here, we show that the mutants with high CLD1/CHLG ratio, by different combinations of chlg-1 (a knock-down mutant) and the hyperactive cld1-1 alleles, develop necrotic leaves when grown under long- and short-day, but not continuous light conditions, owing to the accumulation of chlorophyllide in the dark. Combination of chlg-1 with cld1-4 (a knock-out mutant) leads to reduced chlorophyllide accumulation and necrosis. The operation of CLD1 and CHLG as a Chl salvage pathway was also explored in the context of Chl recycling during the turnover of Chl-binding proteins of the two photosystems. CLD1 was found to interact with CHLG and the light-harvesting complex-like proteins OHP1 and LIL3, implying that auxiliary factors are required for this process.


Subject(s)
Arabidopsis , Chlorophyllides , Arabidopsis/genetics , Arabidopsis/metabolism , Chlorophyll/metabolism , Chlorophyllides/metabolism , Light , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism
17.
New Phytol ; 235(5): 1868-1883, 2022 09.
Article in English | MEDLINE | ID: mdl-35615903

ABSTRACT

Tetrapyrroles have essential functions as pigments and cofactors during plant growth and development, and the tetrapyrrole biosynthesis pathway is tightly controlled. Multiple organellar RNA editing factors (MORFs) are required for editing of a wide variety of RNA sites in chloroplasts and mitochondria, but their biochemical properties remain elusive. Here, we uncovered the roles of chloroplast-localized MORF2 and MORF9 in modulating tetrapyrrole biosynthesis and embryogenesis in Arabidopsis thaliana. The lack or reduced transcripts of MORF2 or MORF9 significantly affected biosynthesis of the tetrapyrrole precursor 5-aminolevulinic acid and accumulation of Chl and other tetrapyrrole intermediates. MORF2 directly interacts with multiple tetrapyrrole biosynthesis enzymes and regulators, including NADPH:PROTOCHLOROPHYLLIDE OXIDOREDUCTASE B (PORB) and GENOMES UNCOUPLED4 (GUN4). Strikingly, MORF2 and MORF9 display holdase chaperone activity, alleviate the aggregation of PORB in vitro, and are essential for POR accumulation in vivo. Moreover, both MORF2 and MORF9 significantly stimulate magnesium chelatase activity. Our findings reveal a previously unknown biochemical property of MORF proteins as chaperones and point to a new layer of post-translational control of the tightly regulated tetrapyrrole biosynthesis in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Tetrapyrroles/metabolism
18.
J Exp Bot ; 73(14): 4624-4636, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35536687

ABSTRACT

Tetrapyrrole biosynthesis produces metabolites that are essential for critical reactions in photosynthetic organisms, including chlorophylls, heme, siroheme, phytochromobilins, and their derivatives. Due to the paramount importance of tetrapyrroles, a better understanding of the complex regulation of tetrapyrrole biosynthesis promises to improve plant productivity in the context of global climate change. Tetrapyrrole biosynthesis is known to be controlled at multiple levels-transcriptional, translational and post-translational. This review addresses recent advances in our knowledge of the post-translational regulation of tetrapyrrole biosynthesis and summarizes the regulatory functions of the various auxiliary factors involved. Intriguingly, the post-translational network features three prominent metabolic checkpoints, located at the steps of (i) 5-aminolevulinic acid synthesis (the rate-limiting step in the pathway), (ii) the branchpoint between chlorophyll and heme synthesis, and (iii) the light-dependent enzyme protochlorophyllide oxidoreductase. The regulation of protein stability, enzymatic activity, and the spatial organization of the committed enzymes in these three steps ensures the appropriate flow of metabolites through the tetrapyrrole biosynthesis pathway during photoperiodic growth. In addition, we offer perspectives on currently open questions for future research on tetrapyrrole biosynthesis.


Subject(s)
Chlorophyll , Tetrapyrroles , Chlorophyll/metabolism , Heme/metabolism , Photosynthesis , Plants/genetics , Plants/metabolism , Tetrapyrroles/metabolism
19.
Nat Plants ; 7(10): 1420-1432, 2021 10.
Article in English | MEDLINE | ID: mdl-34475529

ABSTRACT

The assembly of light-harvesting chlorophyll-binding proteins (LHCPs) is coordinated with chlorophyll biosynthesis during chloroplast development. The ATP-independent chaperone known as chloroplast signal recognition particle 43 (cpSRP43) mediates post-translational LHCP targeting to the thylakoid membrane and also participates in tetrapyrrole biosynthesis (TBS). How these distinct actions of cpSRP43 are controlled has remained unclear. Here, we demonstrate that cpSRP43 effectively protects several TBS proteins from heat-induced aggregation and enhances their stability during leaf greening and heat shock. While the substrate-binding domain of cpSRP43 is sufficient for chaperoning LHCPs, the stabilization of TBS clients requires the chromodomain 2 of the protein. Strikingly, cpSRP54-which activates cpSRP43's LHCP-targeted function-inhibits the chaperone activity of cpSRP43 towards TBS proteins. High temperature weakens the interaction of cpSRP54 with cpSRP43, thus freeing cpSRP43 to interact with and protect the integrity of TBS proteins. Our data indicate that the temperature sensitivity of the cpSRP43-cpSRP54 complex enables cpSRP43 to serve as an autonomous chaperone for the thermoprotection of TBS proteins.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Chlorophyll/biosynthesis , Heat-Shock Response/genetics , Signal Recognition Particle/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/genetics , Signal Recognition Particle/metabolism
20.
Plant J ; 107(2): 360-376, 2021 07.
Article in English | MEDLINE | ID: mdl-33901334

ABSTRACT

The control of chlorophyll (Chl) synthesis in angiosperms depends on the light-operating enzyme protochlorophyllide oxidoreductase (POR). The interruption of Chl synthesis during darkness requires suppression of the synthesis of 5-aminolevulinic acid (ALA), the first precursor molecule specific for Chl synthesis. The inactivation of glutamyl-tRNA reductase (GluTR), the first enzyme in tetrapyrrole biosynthesis, accomplished the decreased ALA synthesis by the membrane-bound protein FLUORESCENT (FLU) and prevents overaccumulation of protochlorophyllide (Pchlide) in the dark. We set out to elucidate the molecular mechanism of FLU-mediated inhibition of ALA synthesis, and explored the role of each of the three structural domains of mature FLU, the transmembrane, coiled-coil and tetratricopeptide repeat (TPR) domains, in this process. Efforts to rescue the FLU knock-out mutant with truncated FLU peptides revealed that, on its own, the TPR domain is insufficient to inactivate GluTR, although tight binding of the TPR domain to GluTR was detected. A truncated FLU peptide consisting of transmembrane and TPR domains also failed to inactivate GluTR in the dark. Similarly, suppression of ALA synthesis could not be achieved by combining the coiled-coil and TPR domains. Interaction studies revealed that binding of GluTR and POR to FLU is essential for inhibiting ALA synthesis. These results imply that all three FLU domains are required for the repression of ALA synthesis, in order to avoid the overaccumulation of Pchlide in the dark. Only complete FLU ensures the formation of a membrane-bound ternary complex consisting at least of FLU, GluTR and POR to repress ALA synthesis.


Subject(s)
Arabidopsis Proteins/chemistry , Aldehyde Oxidoreductases/metabolism , Aminolevulinic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chlorophyll/metabolism , Darkness , Ethanol/pharmacology , Gene Expression/drug effects , Light , Plants, Genetically Modified , Seedlings/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...