Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293232

ABSTRACT

Purpose: Uveal melanoma (UM) is a highly aggressive disease with very few treatment options. We previously demonstrated that mUM is characterized by high oxidative phosphorylation (OXPHOS). Here we tested the anti-tumor, signaling and metabolic effects of imipridones, CLPP activators which reduce OXPHOS indirectly and have demonstrated safety in patients. Experimental Design: We assessed CLPP expression in UM patient samples. We tested the effects of imipridones (ONC201, ONC212) on the growth, survival, signaling and metabolism of UM cell lines in vitro, and for therapeutic effects in vivo in UM liver metastasis models. Results: CLPP expression was confirmed in primary and mUM patient samples. ONC201/212 treatment of UM cell lines in vitro decreased OXPHOS effectors, inhibited cell growth and migration, and induced apoptosis. ONC212 increased metabolic stress and apoptotic pathways, inhibited amino acid metabolism, and induced cell death-related lipids. ONC212 also decreased tumor burden and increased survival in vivo in two UM liver metastasis models. Conclusion: Imipridones are a promising strategy for further testing and development in mUM.

2.
Cancer Res Commun ; 3(7): 1397-1408, 2023 07.
Article in English | MEDLINE | ID: mdl-37529399

ABSTRACT

The arachidonic acid pathway participates in immunosuppression in various types of cancer. Our previous observation detailed that microsomal prostaglandin E2 synthase 1 (mPGES-1), an enzyme downstream of cyclooxygenase 2 (COX-2), limited antitumor immunity in melanoma; in addition, genetic depletion of mPGES-1 specifically enhanced immune checkpoint blockade therapy. The current study set out to distinguish the roles of mPGES-1 from those of COX-2 in tumor immunity and determine the potential of mPGES-1 inhibitors for reinforcing immunotherapy in melanoma. Genetic deletion of mPGES-1 showed different profiles of prostaglandin metabolites from that of COX-2 deletion. In our syngeneic mouse model, mPGES-1-deficient cells exhibited similar tumorigenicity to that of COX-2-deficient cells, despite a lower ability to suppress PGE2 synthesis by mPGES-1 depletion, indicating the presence of factors other than PGE2 that are likely to regulate tumor immunity. RNA-sequencing analysis revealed that mPGES-1 depletion reduced the expressions of collagen-related genes, which have been found to be associated with immunosuppressive signatures. In our mouse model, collagen was reduced in mPGES-1-deficient tumors, and phenotypic analysis of tumor-infiltrating lymphocytes indicated that mPGES-1-deficient tumors had fewer TIM3+ exhausted CD8+ T cells compared with COX-2-deficient tumors. CAY10678, an mPGES-1 inhibitor, was equivalent to celecoxib, a selective COX-2 inhibitor, in reinforcing anti-PD-1 treatment. Our study indicates that mPGES-1 inhibitors represent a promising adjuvant for immunotherapies in melanoma by reducing collagen deposition and T-cell exhaustion. Significance: Collagen is a predominant component of the extracellular matrix that may influence the tumor immune microenvironment for cancer progression. We present here that mPGES-1 has specific roles in regulating tumor immunity, associated with several collagen-related genes and propose that pharmacologic inhibition of mPGES-1 may hold therapeutic promise for improving immune checkpoint-based therapies.


Subject(s)
Intramolecular Oxidoreductases , Melanoma , Animals , Mice , Prostaglandin-E Synthases/genetics , Intramolecular Oxidoreductases/genetics , Cyclooxygenase 2/genetics , Dinoprostone/metabolism , CD8-Positive T-Lymphocytes/metabolism , T-Cell Exhaustion , Melanoma/drug therapy , Cyclooxygenase 1 , Collagen , Immunotherapy , Tumor Microenvironment
3.
Cancers (Basel) ; 14(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36551732

ABSTRACT

Uveal melanoma originating in the eye and metastasizing to the liver is associated with poor prognosis and has only one approved therapeutic option. We hypothesized that liver-borne growth factors may contribute to UM growth. Therefore, we investigated the role of IGF-1/IGF-1R signaling in UM. Here, we found that IRS-1, the insulin receptor substrate, is overexpressed in both UM cells and tumors. Since we previously observed that IGF-1R antibody therapy was not clinically effective in UM, we investigated the potential of NT157, a small molecule inhibitor of IRS-1/2, in blocking this pathway in UM. NT157 treatment of multiple UM cell lines resulted in reduced cell growth and migration and increased apoptosis. This treatment also significantly inhibited UM tumor growth in vivo, in the chicken egg chorioallantoic membrane (CAM) and subcutaneous mouse models, validating the in vitro effect. Mechanistically, through reverse phase protein array (RPPA), we identified significant proteomic changes in the PI3K/AKT pathway, a downstream mediator of IGF-1 signaling, with NT157 treatment. Together, these results suggest that NT157 inhibits cell growth, survival, and migration in vitro, and tumor growth in vivo via inhibiting IGF-1 signaling in UM.

4.
Nat Commun ; 13(1): 4000, 2022 07 09.
Article in English | MEDLINE | ID: mdl-35810190

ABSTRACT

Melanoma cells display distinct intrinsic phenotypic states. Here, we seek to characterize the molecular regulation of these states using multi-omic analyses of whole exome, transcriptome, microRNA, long non-coding RNA and DNA methylation data together with reverse-phase protein array data on a panel of 68 highly annotated early passage melanoma cell lines. We demonstrate that clearly defined cancer cell intrinsic transcriptomic programs are maintained in melanoma cells ex vivo and remain highly conserved within melanoma tumors, are associated with distinct immune features within tumors, and differentially correlate with checkpoint inhibitor and adoptive T cell therapy efficacy. Through integrative analyses we demonstrate highly complex multi-omic regulation of melanoma cell intrinsic programs that provide key insights into the molecular maintenance of phenotypic states. These findings have implications for cancer biology and the identification of new therapeutic strategies. Further, these deeply characterized cell lines will serve as an invaluable resource for future research in the field.


Subject(s)
Melanoma , MicroRNAs , RNA, Long Noncoding , DNA Methylation , Humans , Melanoma/metabolism , Melanoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Transcriptome
6.
Cell Death Dis ; 13(2): 117, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35121729

ABSTRACT

Soluble forms of receptors play distinctive roles in modulating signal-transduction pathways. Soluble CD74 (sCD74) has been identified in sera of inflammatory diseases and implicated in their pathophysiology; however, few relevant data are available in the context of cancer. Here we assessed the composition and production mechanisms, as well as the clinical significance and biological properties, of sCD74 in melanoma. Serum sCD74 levels were significantly elevated in advanced melanoma patients compared with normal healthy donors, and the high ratio of sCD74 to macrophage-migration inhibitory factor (MIF) conferred significant predictive value for prolonged survival in these patients (p = 0.0035). Secretion of sCD74 was observed primarily in melanoma cell lines as well as a THP-1 line of macrophages from monocytes and primary macrophages, especially in response to interferon-γ (IFN-γ). A predominant form that showed clinical relevance was the 25-KDa sCD74, which originated from the 33-KDa isoform of CD74. The release of this sCD74 was regulated by either a disintegrin and metalloproteinase-mediated cell-surface cleavage or cysteine-protease-mediated lysosomal cleavage, depending on cell types. Both recombinant and THP-1 macrophage-released endogenous sCD74 suppressed melanoma cell growth and induced apoptosis under IFN-γ stimulatory conditions via inhibiting the MIF/CD74/AKT-survival pathway. Our findings demonstrate that the interplay between sCD74 and MIF regulates tumor progression and determines patient outcomes in advanced melanoma.


Subject(s)
Histocompatibility Antigens Class II , Macrophage Migration-Inhibitory Factors , Melanoma , Antigens, Differentiation, B-Lymphocyte , Cell Proliferation , Histocompatibility Antigens Class II/metabolism , Humans , Interferon-gamma/pharmacology , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors/metabolism , Macrophages/metabolism , Melanoma/pathology , Signal Transduction
7.
Front Oncol ; 11: 631766, 2021.
Article in English | MEDLINE | ID: mdl-33643925

ABSTRACT

We previously showed that inducible nitric oxide synthase (iNOS) protein expression in melanoma tumor cells is associated with poor patient prognosis. Here, we analyzed the association between iNOS and the oncogenic PI3K-AKT pathway. TCGA data show that iNOS and phospho-Akt Ser473 expression were associated significantly only in the subset of tumors with genetically intact PTEN. Employing a stage III melanoma TMA, we showed that iNOS protein presence is significantly associated with shorter survival only in tumors with PTEN protein expression. These findings led to our hypothesis that the iNOS product, nitric oxide (NO), suppresses the function of PTEN and stimulates PI3K-Akt activation. Melanoma cells in response to NO exposure in vitro exhibited enhanced AKT kinase activity and substrate phosphorylation, as well as attenuated PTEN phosphatase activity. Biochemical analysis showed that NO exposure resulted in a post-translationally modified S-Nitrosylation (SNO) PTEN, which was also found in cells expressing iNOS. Our findings provide evidence that NO-rich cancers may exhibit AKT activation due to post-translational inactivation of PTEN. This unique activation of oncogenic pathway under nitrosative stress may contribute to the pathogenesis of iNOS in melanoma. Significance: Our study shows that iNOS expression is associated with increased PI3K-AKT signaling and worse clinical outcomes in melanoma patients with wt (intact) PTEN. Mutated PTEN is already inactivated. We also demonstrate that NO activates the PI3K-AKT pathway by suppressing PTEN suppressor function concurrent with the formation of PTEN-SNO. This discovery provides insight into the consequences of inflammatory NO produced in human melanoma and microenvironmental cells. It suggests that NO-driven modification provides a marker of PTEN inactivation, and represents a plausible mechanism of tumor suppressor inactivation in iNOS expressing subset of cancers.

8.
Cancers (Basel) ; 12(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327409

ABSTRACT

Innate inflammatory features have been found in melanoma tumors from patients at all stages, and molecular analysis has identified definitive inflammatory proteins expressed by tumors cells in patients who presents the worst prognosis. We have previously observed weakened outcomes in patients with constitutive expression of inducible nitric oxide synthase (iNOS), macrophage migration inhibitory factor (MIF) and improved outcomes with CD74 expression in stage III melanoma. In our current study, we tested our hypothesis on CD74-regulated inflammatory markers' expression in stage IV melanoma tumors whether the signature is associated with survival outcome and/or risk of developing CNS metastasis. We retrospectively identified 315 patients with stage IV melanoma. In a tissue microarray (TMA), we examined the expression of cells with CD74, its receptor MIF, and downstream inflammatory markers iNOS, nitrotyrosine (NT), cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase-1 (mPGES1). We analyzed the association of those inflammatory markers with overall survival time (OS) and time to CNS metastasis using Kaplan-Meier survival analyses. Our data validates CD74 as a useful prognostic tumor cell protein marker associated with favorable OS as in stage III melanomas, while the tumor NT expression strongly predicts an increased risk of developing CNS metastasis (p = 0.0008) in those patients.

9.
Cancer Chemother Pharmacol ; 84(6): 1323-1331, 2019 12.
Article in English | MEDLINE | ID: mdl-31583436

ABSTRACT

PURPOSE: Metformin activates AMP-related pathways leading to inactivation of mammalian target of rapamycin (mTOR) and suppression of its downstream effectors, crucial for cancer growth. Epidemiologic studies showed a reduced incidence and improved survival in cancer patients. We conducted a prospective phase I study to assess the safety of metformin in combination with chemotherapy in patients with solid tumors. METHODS: We conducted a delayed-start randomized trial of non-diabetic patients in two stages. In Stage 1, we randomized patients to two arms: concurrent arm (metformin with chemo) vs. delayed arm (chemo alone). In Stage 2, patients in delayed arm were crossed over to receive metformin. Patients received metformin 500 mg twice daily with chemotherapy to define dose-limiting toxicities (DLTs) in both stages. Secondary endpoints assessed adverse events (AEs) and response rates. Translational correlates included effects of metformin on expression and phosphorylation of 5' adenosine monophosphate-activated protein kinase (AMPK) by western blot in PBMCs. RESULTS: A total of 100 patients were enrolled (51 in delayed arm vs. 49 concurrent arm). Rate of DLTs in patients receiving metformin with chemotherapy was 6.1% vs. 7.8% in patients receiving chemotherapy alone. DLTs seen with addition of metformin included those associated with established chemo adverse events. No lactic acidosis or hypoglycemia occurred. Restaging showed stable disease in 46% at cessation of metformin. 28% of patients with measurable tumor markers showed improvement. AMPK phosphorylation showed a four- to sixfold increase in AMPK phosphorylation after metformin. CONCLUSIONS: This is the largest phase I study of metformin combined with chemotherapy, which suggests that metformin can be given safely with chemotherapy, and offers a platform for future studies. Post-metformin increase in AMPK phosphorylation may potentially explain lack of disease progression in nearly half of our patients. FUNDING: UL1 TR001064. CLINICAL TRIAL INFORMATION: NCT01442870.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Drug-Related Side Effects and Adverse Reactions/epidemiology , Metformin/adverse effects , Neoplasms/drug therapy , AMP-Activated Protein Kinases/metabolism , Adolescent , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Drug Administration Schedule , Drug-Related Side Effects and Adverse Reactions/etiology , Female , Humans , Male , Metformin/administration & dosage , Metformin/pharmacokinetics , Middle Aged , Neoplasms/mortality , Neoplasms/pathology , Phosphorylation/drug effects , Progression-Free Survival , Prospective Studies , Time Factors , Young Adult
10.
Invest Ophthalmol Vis Sci ; 60(13): 4187-4195, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31596927

ABSTRACT

Purpose: Metastatic uveal melanoma (UM) has a very poor prognosis and no effective therapy. Despite remarkable advances in treatment of cutaneous melanoma, UM remains recalcitrant to chemotherapy, small-molecule kinase inhibitors, and immune-based therapy. Methods: We assessed two sets of oxidative phosphorylation (OxPhos) genes within 9858 tumors across 31 cancer types. An OxPhos inhibitor was used to characterize differential metabolic programming of highly metastatic monosomy 3 (M3) UM. Seahorse analysis and global metabolomics profiling were done to identify metabolic vulnerabilities. Analyses of UM TCGA data set were performed to determine expressions of key OxPhos effectors in M3 and non-M3 UM. We used targeted knockdown of succinate dehydrogenase A (SDHA) to determine the role of SDHA in M3 UM in conferring resistance to OxPhos inhibition. Results: We identified UM to have among the highest median OxPhos levels and showed that M3 UM exhibits a distinct metabolic profile. M3 UM shows markedly low succinate levels and has highly increased levels of SDHA, the enzyme that couples the tricarboxylic acid cycle with OxPhos by oxidizing (lowering) succinate. We showed that SDHA-high M3 UM have elevated expression of key OxPhos molecules, exhibit abundant mitochondrial reserve respiratory capacity, and are resistant to OxPhos antagonism, which can be reversed by SDHA knockdown. Conclusions: Our study has identified a critical metabolic program within poor prognostic M3 UM. In addition to the heightened mitochondrial functional capacity due to elevated SDHA, M3 UM SDHA-high mediate resistance to therapy that is reversible with targeted treatment.


Subject(s)
Melanoma/metabolism , Succinate Dehydrogenase/physiology , Uveal Neoplasms/metabolism , Humans , Oxidative Phosphorylation , Succinate Dehydrogenase/metabolism , Succinic Acid/metabolism , Tumor Cells, Cultured
11.
Cancer Immunol Immunother ; 68(9): 1493-1500, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31501955

ABSTRACT

Immunotherapy with checkpoint inhibitors revolutionized melanoma treatment in both the adjuvant and metastatic setting, yet not all metastatic patients respond, and metastatic disease still often recurs among immunotherapy-treated patients with locally advanced disease. TNFSF4 is a co-stimulatory checkpoint protein expressed by several types of immune and non-immune cells, and was shown in the past to enhance the anti-neoplastic activity of T cells. Here, we assessed its expression in melanoma and its association with outcome in locally advanced and metastatic disease. We used publicly available data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE), and RNA sequencing data from anti-PD1-treated patients at Sheba medical center. TNFSF4 mRNA is expressed in melanoma cell lines and melanoma samples, including those with low lymphocytic infiltrates, and is not associated with the ulceration status of the primary tumor. Low expression of TNFSF4 mRNA is associated with worse prognosis in all melanoma patients and in the cohorts of stage III and stage IIIc-IV patients. Low expression of TNFSF4 mRNAs is also associated with worse prognosis in the subgroup of patients with low lymphocytic infiltrates, suggesting that tumoral TNFSF4 is associated with outcome. TNFSF4 expression was not correlated with the expression of other known checkpoint mRNAs. Last, metastatic patients with TNFSF4 mRNA expression within the lowest quartile have significantly worse outcome on anti-PD1 treatment, and a significantly lower response rate to these agents. Our current work points to TNFSF4 expression in melanoma as a potential determinant of prognosis, and warrants further translational and clinical research.


Subject(s)
Immunotherapy/methods , Melanoma/metabolism , OX40 Ligand/metabolism , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/drug therapy , Melanoma/mortality , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Nivolumab/pharmacology , Nivolumab/therapeutic use , OX40 Ligand/genetics , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Survival Analysis , Treatment Outcome
13.
J Cell Biochem ; 120(2): 2098-2108, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30256441

ABSTRACT

Research on mitochondrial fusion and fission (mitochondrial dynamics) has gained much attention in recent years, as it is important for understanding many biological processes, including the maintenance of mitochondrial functions, apoptosis, and cancer. The rate of mitochondrial biosynthesis and degradation can affect various aspects of tumor progression. However, the role of mitochondrial dynamics in melanoma progression remains controversial and requires a mechanistic understanding to target the altered metabolism of cancer cells. Therefore, in our study, we disrupted mitochondrial fission with mdivi-1, the reported inhibitor of dynamin related protein 1 (Drp1), and knocked down Drp1 and Mfn2 to evaluate the effects of mitochondrial dynamic alterations on melanoma cell progression. Our confocal study results showed that mitochondrial fission was inhibited both in mdivi-1 and in Drp1 knockdown cells and, in parallel, mitochondrial fusion was induced. We also found that mitochondrial fission inhibition by mdivi-1 induced cell death in melanoma cells. However, silencing Drp1 and Mfn2 did not affect cell viability, but enhanced melanoma cell migration. We further show that dysregulated mitochondrial fusion by Mfn2 knockdowns suppressed the oxygen consumption rate of melanoma cells. Together, our findings suggest that mitochondrial dynamic alterations regulate melanoma cell migration and progression.

14.
Clin Cancer Res ; 25(5): 1650-1663, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30538110

ABSTRACT

PURPOSE: Microsomal prostaglandin E2 synthase 1 (mPGES1) was evaluated as an important downstream effector of the COX2 pathway responsible for tumor-mediated immunosuppression in melanoma. EXPERIMENTAL DESIGN: The analysis of a stage III melanoma tissue microarray (n = 91) was performed to assess the association between mPGES1, COX2, CD8, and patient survival. Pharmacologic inhibitors and syngeneic mouse models using PTGES-knockout (KO) mouse melanoma cell lines were used to evaluate the mPGES1-mediated immunosuppressive function. RESULTS: We observed correlations in expression and colocalization of COX2 and mPGES1, which are associated with increased expression of immunosuppressive markers in human melanoma. In a syngeneic melanoma mouse model, PTGES KO increased melanoma expression of PD-L1, increased infiltration of CD8a+ T cells, and CD8a+ dendritic cells into tumors and suppressed tumor growth. Durable tumor regression was observed in mice bearing PTGES KO tumors that were given anti-PD-1 therapy. Analysis of a stage III melanoma tissue microarray revealed significant associations between high mPGES1 expression and low CD8+ infiltration, which correlated with a shorter patient survival. CONCLUSIONS: Our results are the first to illustrate a potential role for mPGES1 inhibition in melanoma immune evasion and selective targeting in supporting the durability of response to PD-1 checkpoint immunotherapy. More research effort in this drug development space is needed to validate the use of mPGES1 inhibitors as safe treatment options.


Subject(s)
Cyclooxygenase 2/metabolism , Immunomodulation , Melanoma/etiology , Melanoma/metabolism , Prostaglandin-E Synthases/genetics , Skin Neoplasms/etiology , Skin Neoplasms/metabolism , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokines/metabolism , Dinoprostone/metabolism , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Immunomodulation/genetics , Inflammation Mediators , Melanoma/drug therapy , Melanoma/pathology , Mice , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Prostaglandin-E Synthases/metabolism , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Tumor Escape/genetics , Melanoma, Cutaneous Malignant
16.
Front Oncol ; 8: 67, 2018.
Article in English | MEDLINE | ID: mdl-29616189

ABSTRACT

The progression from neoplastic initiation to malignancy happens in part because of the failure of immune surveillance. Cancer cells successfully escape immune recognition and elimination and create an immune-suppressive microenvironment. A suppressive metabolic microenvironment may also contribute to ineffective T-cell function. Tumor progression is characterized by a complex network of interactions among different cell types that cooperatively exploit metabolic reprogramming. As we start to recognize that cancer cells use different metabolism processes than normal cells do, a better understanding of the functional mechanisms of the regulation and reprogramming of the metabolic landscape in cancer cells is crucial to successful immunotherapy strategies. However, the exact role of metabolism in T cells and in the tumor microenvironment is not known. One pathway that plays an important role in the regulation of immune cell reactivity is arginine metabolism, which has complex cellular functions. l-arginine and its downstream metabolites (e.g., ornithine and citrulline) could be essential to T-cell activation and thus modulate innate and adaptive immunity to further promote tumor survival and growth. Identifying metabolic targets that mediate immunosuppression and are fundamental to sustaining tumor growth is key to increasing the efficacy of immunotherapies.

17.
JCO Clin Cancer Inform ; 2: 1-12, 2018 12.
Article in English | MEDLINE | ID: mdl-30652536

ABSTRACT

PURPOSE: The amount of available next-generation sequencing data of tumors, in combination with relevant molecular and clinical data, has significantly increased in the last decade and transformed translational cancer research. Even with the progress made through data-sharing initiatives, there is a clear unmet need for easily accessible analyses tools. These include capabilities to efficiently process large sequencing database projects to present them in a straightforward and accurate way. Another urgent challenge in cancer research is to identify more effective combination therapies. METHODS: We have created a software architecture that allows the user to integrate and analyze large-scale sequencing, clinical, and other datasets for efficient prediction of potential combination drug targets. This architecture permits predictions for all genes pairs; however, Food and Drug Administration-approved agents are currently lacking for most of the identified gene targets. RESULTS: By applying this approach, we performed a comprehensive study and analyzed all possible combination partners and identified potentially synergistic target pairs for 38 approved targets currently in clinical use. We further showed which genes could be synergistic prediction markers and potential targets with MAPK/ERK inhibitors for the treatment of melanoma. Moreover, we integrated a graph analytics technique in this architecture to identify pathways that could be targeted synergistically to enhance the efficacy of certain therapeutics in cancer. CONCLUSION: The architecture and the results presented provide a foundation for discovering effective combination therapeutics.


Subject(s)
Drug Therapy, Combination/methods , High-Throughput Nucleotide Sequencing/methods , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Drug Synergism , Gene Regulatory Networks/drug effects , Humans , Neoplasms/genetics , Software , United States
18.
Article in English | MEDLINE | ID: mdl-28819565

ABSTRACT

Appreciation for genomic and immune heterogeneity in cancer has grown though the relationship of these factors to treatment response has not been thoroughly elucidated. To better understand this, we studied a large cohort of melanoma patients treated with targeted therapy or immune checkpoint blockade (n = 60). Heterogeneity in therapeutic responses via radiologic assessment was observed in the majority of patients. Synchronous melanoma metastases were analyzed via deep genomic and immune profiling, and revealed substantial genomic and immune heterogeneity in all patients studied, with considerable diversity in T cell frequency, and few shared T cell clones (<8% on average) across the cohort. Variables related to treatment response were identified via these approaches and through novel radiomic assessment. These data yield insight into differential therapeutic responses to targeted therapy and immune checkpoint blockade in melanoma, and have key translational implications in the age of precision medicine.

19.
Front Immunol ; 8: 689, 2017.
Article in English | MEDLINE | ID: mdl-28670312

ABSTRACT

Human papillomaviruses (HPVs) play a major role in development of cervical cancer, and HPV oncoproteins are being targeted by immunotherapies. Although these treatments show promising results in the clinic, many patients do not benefit or the durability is limited. In addition to HPV antigens, neoantigens derived from somatic mutations may also generate an effective immune response and represent an additional and distinct immunotherapy strategy against this and other HPV-associated cancers. To explore the landscape of neoantigens in cervix cancer, we predicted all possible mutated neopeptides in two large sequencing data sets and analyzed whether mutation and neoantigen load correlate with antigen presentation, infiltrating immune cell types, and a HPV-induced master regulator gene expression signature. We found that targetable neoantigens are detected in most tumors, and there are recurrent mutated peptides from known oncogenic driver genes (KRAS, MAPK1, PIK3CA, ERBB2, and ERBB3) that are predicted to be potentially immunogenic. Our studies show that HPV-induced master regulators are not only associated with HPV load but may also play crucial roles in relation to mutation and neoantigen load, and also the immune microenvironment of the tumor. A subset of these HPV-induced master regulators positively correlated with expression of immune-suppressor molecules such as PD-L1, TGFB1, and IL-10 suggesting that they may be involved in abrogating antitumor response induced by the presence of mutations and neoantigens. Based on these results, we predict that HPV master regulators identified in our study might be potentially effective targets in cervical cancer.

20.
PLoS One ; 12(4): e0176763, 2017.
Article in English | MEDLINE | ID: mdl-28453553

ABSTRACT

The sensitivity of cancer cells to anticancer drugs is a crucial factor for developing effective treatments. However, it is still challenging to precisely predict the effectiveness of therapeutics in humans within a complex genomic and molecular context. We developed an interface which allows the user to rapidly explore drug sensitivity and gene expression associations. Predictions for how expression of various genes affect anticancer drug activity are available for all genes for a set of therapeutics based on data from various cell lines of different origin in the Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in Cancer projects. Our application makes discovery or validation of drug sensitivity and gene expression associations efficient. Effectiveness of this tool is demonstrated by multiple known and novel examples.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Software , Cell Line, Tumor , Databases, Pharmaceutical , Drug Screening Assays, Antitumor , Humans , Internet , NAD(P)H Dehydrogenase (Quinone)/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...