Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mod Pathol ; 37(7): 100509, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704030

ABSTRACT

Acute promyelocytic leukemia (APL) with variant RARA translocation is linked to over 15 partner genes. Recent publications encompassing 6 cases have expanded the spectrum of RARA partners to torque teno mini virus (TTMV). This entity is likely underrecognized due to the lack of clinician and pathologist familiarity, inability to detect the fusion using routine testing modalities, and informatic challenges in its recognition within next-generation sequencing (NGS) data. We describe a clinicopathologic approach and provide the necessary tools to screen and diagnose APL with TTMV::RARA using existing clinical DNA- or RNA-based NGS assays, which led to the identification of 4 cases, all without other known cytogenetic/molecular drivers. One was identified prospectively and 3 retrospectively, including 2 from custom automated screening of multiple data sets (50,257 cases of hematopoietic malignancy, including 4809 acute myeloid leukemia/myeloid sarcoma/APL cases). Two cases presented as myeloid sarcoma, including 1 with multiple relapses after acute myeloid leukemia-type chemotherapy and hematopoietic stem cell transplant. Two cases presented as leukemia, had a poor response to induction chemotherapy, but achieved remission upon reinduction (including all-trans retinoic acid in 1 case) and subsequent hematopoietic stem cell transplant. Neoplastic cells demonstrated features of APL including frequent azurophilic granules and dim/absent CD34 and HLA-DR expression. RARA rearrangement was not detected by karyotype or fluorescent in situ hybridization. Custom analysis of NGS fusion panel data identified TTMV::RARA rearrangements and, in the prospectively identified case, facilitated monitoring in sequential bone marrow samples. APL with TTMV::RARA is a rare leukemia with a high rate of treatment failure in described cases. The diagnosis should be considered in leukemias with features of APL that lack detectable RARA fusions and other drivers, and may be confirmed by appropriate NGS tests with custom informatics. Incorporation of all-trans retinoic acid may have a role in treatment but requires accurate recognition of the fusion for appropriate classification as APL.

2.
J Mol Diagn ; 25(9): 665-681, 2023 09.
Article in English | MEDLINE | ID: mdl-37419244

ABSTRACT

Recognition of aberrant gene isoforms due to DNA events can impact risk stratification and molecular classification of hematolymphoid tumors. In myelodysplastic syndromes, KMT2A partial tandem duplication (PTD) was one of the top adverse predictors in the International Prognostic Scoring System-Molecular study. In B-cell acute lymphoblastic leukemia (B-ALL), ERG isoforms have been proposed as markers of favorable-risk DUX4 rearrangements, whereas deletion-mediated IKZF1 isoforms are associated with adverse prognosis and have been extended to the high-risk IKZF1plus signature defined by codeletions, including PAX5. In this limited study, outlier expression of isoforms as markers of IKZF1 intragenic or 3' deletions, DUX4 rearrangements, or PAX5 intragenic deletions were 92.3% (48/52), 90% (9/10), or 100% (9/9) sensitive, respectively, and 98.7% (368/373), 100% (35/35), or 97.1% (102/105) specific, respectively, by targeted RNA sequencing, and 84.0% (21/25), 85.7% (6/7), or 81.8% (9/11) sensitive, respectively, and 98.2% (109/111), 98.4% (127/129), or 98.7% (78/79) specific, respectively, by total RNA sequencing. Comprehensive split-read analysis identified expressed DNA breakpoints, cryptic splice sites associated with IKZF1 3' deletions, PTD of IKZF1 exon 5 spanning N159Y in B-ALL with mutated IKZF1 N159Y, and truncated KMT2A-PTD isoforms. Outlier isoforms were also effective targeted RNA markers for PAX5 intragenic amplifications (B-ALL), KMT2A-PTD (myeloid malignant cancers), and rare NOTCH1 intragenic deletions (T-cell acute lymphoblastic leukemia). These findings support the use of outlier isoform analysis as a robust strategy for detecting clinically significant DNA events.


Subject(s)
Neoplasms , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Isoforms/genetics , Sequence Analysis, RNA , Genomics
3.
BMC Genomics ; 19(1): 199, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29703133

ABSTRACT

BACKGROUND: Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. RESULTS: We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. CONCLUSIONS: These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA, Ribosomal/isolation & purification , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Gene Library , Humans , Poly A/genetics , RNA, Ribosomal/genetics
4.
Genet Med ; 15(9): 706-12, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23558256

ABSTRACT

PURPOSE: A combination of oligonucleotide and single-nucleotide polymorphism probes on the same array platform can detect copy-number abnormalities and copy-neutral aberrations such as uniparental disomy and long stretches of homozygosity. The single-nucleotide polymorphism probe density in commercially available platforms varies widely, which may affect the detection of copy-neutral abnormalities. METHODS: We evaluated the ability of array platforms with low (Oxford Gene Technology CytoSure ISCA uniparental disomy), mid-range (Agilent custom array), and high (Affymetrix CytoScan HD) single-nucleotide polymorphism probe density to detect copy-number variation, mosaicism, uniparental isodisomy, and absence of heterozygosity in 50 clinical samples. RESULTS: All platforms reliably detected copy-number variation, mosaicism, and uniparental isodisomy; however, absence-of-heterozygosity detection varied significantly. The low-density array called absence-of-heterozygosity regions not confirmed by the other platforms and also overestimated the length of true absence-of-heterozygosity regions. Furthermore, the low- and mid-density platforms failed to detect some small absence-of-heterozygosity regions that were identified by the high-density platform. CONCLUSION: Variation in single-nucleotide polymorphism density can lead to major discrepancies in the detection of and confidence in copy-neutral abnormalities. Although suitable for uniparental disomy detection, copy-number plus single-nucleotide polymorphism arrays with 30,000 or fewer unique single-nucleotide polymorphism probes miscall absence-of-heterozygosity regions due to identity by descent.


Subject(s)
Comparative Genomic Hybridization/methods , DNA Copy Number Variations , Loss of Heterozygosity , Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Chromosome Aberrations , Consanguinity , DNA Probes , Female , Genome, Human , Healthy Volunteers , Homozygote , Humans , Male , Uniparental Disomy/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...