Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 38(6): 1201-14, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9869425

ABSTRACT

Hydroxycinnamoyl/benzoyl-CoA:anthranilate N-hydroxycinnamoyl/benzoyltransferase (HCBT) catalyses the committed reaction of phytoalexin biosynthesis in carnation (Dianthus caryophyllus L.). Three HCBT cDNAs were cloned previously from suspension-cultured carnation cells that had been induced with fungal elicitor. A rapid, transient induction of hcbt transcripts upon elicitation, reaching maximal abundances within about 0.5 h and returning to basal levels within 4 h, suggested the involvement of unusual cis elements. A DNA fragment of 3.8 kb, spanning the hcbt2 gene with the 5'-flanking region of roughly 1.8 kb, was cloned from carnation plants. The gene encodes one long open reading frame lacking introns. The DNA sequence revealed a conserved TATA box, three elicitor response elements (EREs) and a 9 bp direct repeat as well as an interrupted direct repeat of 11 bp in the TATA distal region. EMSA revealed the binding of elicitor-inducible nuclear factors to the promoter region from -377 to -326 spanning two of the EREs, and their functional relevance was confirmed by transient expression assays of hcbt2 promoter-GUS reporter gene constructs in parsley protoplasts. Furthermore, an oligo(A) segment was present immediately preceding the start of translation (+140 to +150). Transient expression analysis demonstrated that the sequence upstream to -1157 at least is required in context with the 5'-UTR, particularly including the poly(A) segment, for strong expression and full elicitor induction of the hcbt2 gene. The results suggested that several sequence motifs scattered over a wide range of the 5'-flanking region and into the exonic sequence are responsible for the full elicitor regulation of the hcbt2 gene.


Subject(s)
Acyltransferases/genetics , Plants/enzymology , Plants/genetics , Promoter Regions, Genetic , Transcription, Genetic , Acyltransferases/metabolism , Base Sequence , Cell Nucleus/metabolism , Cells, Cultured , Cloning, Molecular , Conserved Sequence , DNA, Complementary , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Extracts/biosynthesis , Plant Leaves , Polymerase Chain Reaction , Protein Biosynthesis , Sequence Alignment , Sequence Homology, Nucleic Acid , Sesquiterpenes , TATA Box , Terpenes , Phytoalexins
2.
Plant Mol Biol ; 33(2): 323-41, 1997 Jan.
Article in English | MEDLINE | ID: mdl-9037150

ABSTRACT

The sequence of the S-adenosyl-L-methionine:trans-caffeoyl-CoA O-methyltransferase (CCoAOMT, EC2.1.1.104) gene, including the 5'-flanking region of 5 kb, was determined from parsley (Petroselinum crispum) plants. The enzyme appears to be encoded by one or two genes, and the ORF is arranged in five exons spaced by introns from 107 to 263 bp in length. The genomic sequence matches the ORF of the cDNA previously reported from elicited parsley cell cultures, showing only three base changes that do not affect the enzyme polypeptide sequence. S1 nuclease protection assays and primer extension analyses with genomic and cDNA templates revealed the transcription start site 67 bp upstream of the translation start codon, indicating a shorter 5'-UTR than reported previously for the transcript. Promoter regulatory consensus elements such as two 'CAAT' boxes and one 'TATA' box were identified at -196, -127 and -31, respectively, relative to the transcription start site, and an SV 40-like enhancer element is located 347 bp upstream. Most notably, three putative cis-regulatory elements were recognized by sequence alignments, which represent motifs recurring in the promoters of several genes of the stress-inducible phenylpropanoid pathway (boxes P, A and L). Transient expression assays with a set of 5'-truncated promoter-GUS fusions show that significant promoter activity is retained in a 354 bp promoter fragment. In vitro DNase 1 footprint experiments and electrophoretic mobilty shift assays (EMSA) identified in this fragment a unique sequence motif with elicitor-inducible trans-factor binding activity, which was unrelated to boxes P, A, or L. This novel cis-regulatory element, designated box E, appears to be conserved in the TATA-proximal regions of other stress-inducible phenylpropanoid genes, and in vitro binding of nuclear protein was confirmed in EMSA assays for such an element from the PAL-1 promoter (-54 to -45). Moreover, the deletion of box E reduced the activity and erased the elicitor-responsiveness of the CCoAOMT promoter in transient expression assays. The results corroborate the proposed physiological function of CCoAOMT in elicited plant cells and may shed new light on the sequential action of trans-active factors in the regulation of phenylpropanoid genes.


Subject(s)
Genes, Plant , Magnoliopsida/enzymology , Methyltransferases/genetics , Promoter Regions, Genetic , Amino Acid Sequence , Base Sequence , Cells, Cultured , Conserved Sequence , Genomic Library , Magnoliopsida/genetics , Methyltransferases/biosynthesis , Molecular Sequence Data , Polymerase Chain Reaction , Restriction Mapping , Sequence Deletion , Sequence Homology, Nucleic Acid , Transcription, Genetic
3.
Plant Physiol ; 102(2): 459-466, 1993 Jun.
Article in English | MEDLINE | ID: mdl-12231833

ABSTRACT

The elicitor-induced incorporation of phenylpropanoid derivatives into the cell wall and the secretion of soluble coumarin derivatives (phytoalexins) by parsley (Petroselinum crispum L.) suspension cultures can be potentiated by pretreatment of the cultures with 2,6-dichloroisonicotinic acid or derivatives of salicylic acid. To investigate this phenomenon further, the cell walls and an extracellular soluble polymer were isolated from control cells or cells treated with an elicitor from Phytophthora megasperma f. sp. glycinea. After alkaline hydrolysis, both fractions from elicited cells showed a greatly increased content of 4-coumaric, ferulic, and 4-hydroxybenzoic acid, as well as 4-hydroxybenzaldehyde and vanillin. Two minor peaks were identified as tyrosol and methoxytyrosol. The pretreatment effect is most pronounced at a low elicitor concentration. Its specificity was elaborated for coumarin secretion. When the parsley suspension cultures were preincubated for 1 d with 2,6-dichloroisonicotinic, 4- or 5-chlorosalicylic, or 3,5- dichlorosalicylic acid, the cells exhibited a greatly increased elicitor response. Pretreatment with isonicotinic, salicylic, acetylsalicylic, or 2,6-dihydroxybenzoic acid was less efficient in enhancing the response, and some other isomers were inactive. This increase in elicitor response was also observed for the above-mentioned monomeric phenolics, which were liberated from cell walls upon alkaline hydrolysis and for "lignin-like" cell wall polymers determined by the thioglycolic acid method. It was shown for 5-chlorosalicylic acid that conditioning most likely improves the signal transduction leading to the activation of genes encoding phenylalanine ammonia lyase and 4-coumarate: coenzyme A ligase. The conditioning thus sensitizes the parsley suspension cells to respond to lower elicitor concentrations. If a similar mechanism were to apply to whole plants treated with 2,6-dichloroisonicotinic acid, a known inducer of systemic acquired resistance, one can hypothesize that fungal pathogens might be recognized more readily and effectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...