Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 25(10): 103113, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520079

ABSTRACT

Rogue waves are unexpectedly large and localized displacements from an equilibrium position or an otherwise calm background. For the nonlinear Schrödinger (NLS) model widely used in fluid mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise even if dispersion and nonlinearity are of opposite signs in each component as new regimes of modulation instability will appear in the coupled system. The same phenomenon will be demonstrated here for a coupled "AB" system, a wave-current interaction model describing baroclinic instability processes in geophysical flows. Indeed, the onset of modulation instability correlates precisely with the existence criterion for rogue waves for this system. Transitions from "elevation" rogue waves to "depression" rogue waves are elucidated analytically. The dispersion relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to multiple configurations of rogue waves for a given set of input parameters. For special parameter regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evolution of rogue waves were conducted.

2.
Article in English | MEDLINE | ID: mdl-24032767

ABSTRACT

The modified reduced Ostrovsky equation is a reduction of the modified Korteweg-de Vries equation, in which the usual linear dispersive term with a third-order derivative is replaced by a linear nonlocal integral term, representing the effect of background rotation. Here we study the case when the cubic nonlinear term has the same polarity as the rotation term. This equation is integrable provided certain slope constraints are satisfied. We demonstrate, through theoretical analysis and numerical simulations, that when this constraint is not satisfied at the initial time, wave breaking inevitably occurs.

3.
Chaos ; 23(2): 023121, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822486

ABSTRACT

In the weakly nonlinear limit, oceanic internal solitary waves for a single linear long wave mode are described by the KdV equation, extended to the Ostrovsky equation in the presence of background rotation. In this paper we consider the scenario when two different linear long wave modes have nearly coincident phase speeds and show that the appropriate model is a system of two coupled Ostrovsky equations. These are systematically derived for a density-stratified ocean. Some preliminary numerical simulations are reported which show that, in the generic case, initial solitary-like waves are destroyed and replaced by two coupled nonlinear wave packets, being the counterpart of the same phenomenon in the single Ostrovsky equation.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036605, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23031043

ABSTRACT

We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.


Subject(s)
Algorithms , Models, Chemical , Computer Simulation
5.
Chaos ; 15(3): 37102, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16252997

ABSTRACT

We use the integrable Kaup-Boussinesq shallow water system, modified by a small viscous term, to model the formation of an undular bore with a steady profile. The description is made in terms of the corresponding integrable Whitham system, also appropriately modified by viscosity. This is derived in Riemann variables using a modified finite-gap integration technique for the Ablowitz-Kaup-Newell-Segur (AKNS) scheme. The Whitham system is then reduced to a simple first-order differential equation which is integrated numerically to obtain an asymptotic profile of the undular bore, with the local oscillatory structure described by the periodic solution of the unperturbed Kaup-Boussinesq system. This solution of the Whitham equations is shown to be consistent with certain jump conditions following directly from conservation laws for the original system. A comparison is made with the recently studied dissipationless case for the same system, where the undular bore is unsteady.


Subject(s)
Algorithms , Models, Biological , Models, Statistical , Nonlinear Dynamics , Rheology/methods , Water , Computer Simulation , Energy Transfer , Motion
6.
Chaos ; 12(4): 1015-1026, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12779625

ABSTRACT

We study the long-time evolution of the trailing shelves that form behind solitary waves moving through an inhomogeneous medium, within the framework of the variable-coefficient Korteweg-de Vries equation. We show that the nonlinear evolution of the shelf leads typically to the generation of an undular bore and an expansion fan, which form apart but start to overlap and nonlinearly interact after a certain time interval. The interaction zone expands with time and asymptotically as time goes to infinity occupies the whole perturbed region. Its oscillatory structure strongly depends on the sign of the inhomogeneity gradient of the variable background medium. We describe the nonlinear evolution of the shelves in terms of exact solutions to the KdV-Whitham equations with natural boundary conditions for the Riemann invariants. These analytic solutions, in particular, describe the generation of small "secondary" solitary waves in the trailing shelves, a process observed earlier in various numerical simulations. (c) 2002 American Institute of Physics.

SELECTION OF CITATIONS
SEARCH DETAIL
...