Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 20(2): 287-299, 2022 Feb.
Article in English | MEDLINE | ID: mdl-36366987

ABSTRACT

The COVID-19 pandemic has resulted in over 340 million infection cases (as of 21 January 2022) and more than 5.57 million deaths globally. In reaction, science, technology and innovation communities across the globe have organised themselves to contribute to national responses to COVID-19 disease. A significant contribution has been from the establishment of wastewater-based epidemiological (WBE) surveillance interventions and programmes for monitoring the spread of COVID-19 in at least 55 countries. Here, we examine and share experiences and lessons learnt in establishing such surveillance programmes. We use case studies to highlight testing methods and logistics considerations associated in scaling the implementing of such programmes in South Africa, the Netherlands, Turkey and England. The four countries were selected to represent different regions of the world and the perspective based on the considerable progress made in establishing and implementing their national WBE programmes. The selected countries also represent different climatic zones, economies, and development stages, which influence the implementation of national programmes of this nature and magnitude. In addition, the four countries' programmes offer good experiences and lessons learnt since they are systematic, and cover extensive areas, disseminate knowledge locally and internationally and partnered with authorities (government). The programmes also strengthened working relations and partnerships between and among local and global organisations. This paper shares these experiences and lessons to encourage others in the water and public health sectors on the benefits and value of WBE in tackling SARS-CoV-2 and related future circumstances.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Pandemics , Wastewater , South Africa , Netherlands/epidemiology , Turkey/epidemiology
2.
Hear Res ; 277(1-2): 134-42, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21296136

ABSTRACT

Many communication calls contain information about the physical characteristics of the calling animal. During maturation of the guinea pig purr call the pitch becomes lower as the fundamental frequency progressively decreases from 476 to 261 Hz on average. Neurons in the primary auditory cortex (AI) often respond strongly to the purr and we postulated that some of them are capable of distinguishing between purr calls of different pitch. Consequently four pitch-shifted versions of a single call were used as stimuli. Many units in AI (79/182) responded to the purr call either with an onset response or with multiple bursts of firing that were time-locked to the phrases of the call. All had a characteristic frequency ≤5 kHz. Both types of unit altered their firing rate in response to pitch-shifted versions of the call. Of the responsive units, 41% (32/79) had a firing rate locked to the stimulus envelope that was at least 50% higher for one version of the call than any other. Some (14/32) had a preference that could be predicted from their frequency response area while others (18/32) were not predictable. We conclude that about 18% of stimulus-driven cells at the low-frequency end of AI are very sensitive to age-related changes in the purr call.


Subject(s)
Aging/physiology , Auditory Cortex/physiology , Neurons/physiology , Pitch Discrimination , Pitch Perception , Vocalization, Animal , Acoustic Stimulation , Age Factors , Animals , Audiometry, Pure-Tone , Auditory Cortex/cytology , Evoked Potentials, Auditory , Female , Guinea Pigs , Male , Sound Spectrography , Time Factors
3.
Hear Res ; 274(1-2): 142-51, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20630479

ABSTRACT

Phase-locked responses to pure tones have previously been described in the primary auditory cortex (AI) of the guinea pig. They are interesting because they show that some cells may use a temporal code for representing sounds of 60-300 Hz rather than the rate or place mechanisms used over most of AI. Our previous study had shown that the phase-locked responses were grouped together, but it was not clear whether they were in separate minicolumns or a larger macrocolumn. We now show that the phase-locked cells are arranged in a macrocolumn within AI that forms a subdivision of the isofrequency bands. Phase-locked responses were recorded from 158 multiunits using silicon based multiprobes with four shanks. The phase-locked units gave the strongest response in layers III/IV but phase-locked units were also recorded in layers II, V and VI. The column included cells with characteristic frequencies of 80 Hz-1.3 kHz (0.5-0.8 mm long) and was about 0.5 mm wide. It was located at a constant position at the intersection of the coronal plane 1 mm caudal to bregma and the suture that forms the lateral edge of the parietal bone.


Subject(s)
Acoustic Stimulation , Audiometry/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Animals , Auditory Cortex/cytology , Electrodes , Evoked Potentials, Auditory/physiology , Female , Guinea Pigs , Hearing , Male , Models, Biological , Neurons/physiology , Thalamus/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...