Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurotrauma ; 35(7): 907-917, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29187031

ABSTRACT

There are no drugs to manage traumatic brain injury (TBI) presently. A major problem in developing therapeutics is that drugs to manage TBI lack sufficient potency when dosed within a clinically relevant time window. Previous studies have shown that minocycline (MINO, 45 mg/kg) plus N-acetylcysteine (NAC, 150 mg/kg) synergistically improved cognition and memory, modulated inflammation, and prevented loss of oligodendrocytes that remyelinated damaged white matter when first dosed 1 h after controlled cortical impact (CCI) in rats. We show that MINO (45 mg/kg) plus NAC (150 mg/kg) also prevent brain injury in a mouse closed head injury (CHI) TBI model. Using the CHI model, the concentrations of MINO and NAC were titrated to determine that MINO (22.5 mg/kg) plus NAC (75 mg/kg) was more potent than the original formulation. MINO (22.5 mg/kg) plus NAC (75 mg/kg) also limited injury in the rat CCI model. The therapeutic time window of MINO plus NAC was then tested in the CHI and CCI models. Mice and rats could acquire an active place avoidance task when MINO plus NAC was first dosed at 12 h post-injury. A first dose at 12 h also limited gray matter injury in the hippocampus and preserved myelin in multiple white matter tracts. Mice and rats acquired Barnes maze when MINO plus NAC was first dosed at 24 h post-injury. These data suggest that MINO (22.5 mg/kg) plus NAC (75 mg/kg) remain potent when dosed at clinically useful time windows. Both MINO and NAC are drugs approved by the Food and Drug Administration and have been administered safely to patients in clinical trials at the doses in the new formulation. This suggests that the drug combination of MINO plus NAC may be effective in treating patients with TBI.

2.
J Cereb Blood Flow Metab ; 38(8): 1312-1326, 2018 08.
Article in English | MEDLINE | ID: mdl-28685618

ABSTRACT

Mild traumatic brain injury afflicts over 2 million people annually and little can be done for the underlying injury. The Food and Drug Administration-approved drugs Minocycline plus N-acetylcysteine (MINO plus NAC) synergistically improved cognition and memory in a rat mild controlled cortical impact (mCCI) model of traumatic brain injury.3 The underlying cellular and molecular mechanisms of the drug combination are unknown. This study addressed the effect of the drug combination on white matter damage and neuroinflammation after mCCI. Brain tissue from mCCI rats given either sham-injury, saline, MINO alone, NAC alone, or MINO plus NAC was investigated via histology and qPCR at four time points (2, 4, 7, and 14 days post-injury) for markers of white matter damage and neuroinflammation. MINO plus NAC synergistically protected resident oligodendrocytes and decreased the number of oligodendrocyte precursor cells. Activation of microglia/macrophages (MP/MG) was synergistically increased in white matter two days post-injury after MINO plus NAC treatment. Patterns of M1 and M2 MP/MG were also altered after treatment. The modulation of neuroinflammation is a potential mechanism to promote remyelination and improve cognition and memory. These data also provide new and important insights into how drug treatments can induce repair after traumatic brain injury.


Subject(s)
Acetylcysteine/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Brain Injuries, Traumatic/drug therapy , Minocycline/therapeutic use , Oligodendroglia/drug effects , Remyelination/drug effects , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Drug Synergism , Inflammation/complications , Inflammation/drug therapy , Inflammation/pathology , Male , Oligodendroglia/pathology , Rats , Rats, Sprague-Dawley
3.
PLoS One ; 11(9): e0161053, 2016.
Article in English | MEDLINE | ID: mdl-27657499

ABSTRACT

Blunt impact produces a heterogeneous brain injury in people and in animal models of traumatic brain injury. We report that a single closed head impact to adult C57/BL6 mice produced two injury syndromes (CHI-1 and CHI-2). CHI-1 mice spontaneously reinitiated breathing after injury while CHI-2 mice had prolonged apnea and regained breathing only after cardiopulmonary resuscitation and supplementation of 100% O2. The CHI-1 group significantly regained righting reflex more rapidly than the CHI-2 group. At 7 days post-injury, CHI-1, but not CHI-2 mice, acquired but had no long-term retention of an active place avoidance task. The behavioral deficits of CHI-1 and CHI-2 mice were retained one-month after the injury. CHI-1 mice had loss of hippocampal neurons and localized white matter injury at one month after injury. CHI-2 had a larger loss of hippocampal neurons and more widespread loss of myelin and axons. High-speed videos made during the injury were followed by assessment of breathing and righting reflex. These videos show that CHI-2 mice experienced a larger vertical g-force than CHI-1 mice. Time to regain righting reflex in CHI-2 mice significantly correlated with vertical g-force. Thus, physiological responses occurring immediately after injury can be valuable surrogate markers of subsequent behavioral and histological deficits.

4.
Exp Neurol ; 249: 169-77, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24036416

ABSTRACT

Traumatic brain injury (TBI) differs in severity from severe to mild. This study examined whether a combination of the drugs minocycline (MINO) plus N-acetylcysteine (NAC) produces behavioral and histological improvements in a mild version of the controlled cortical impact model of TBI (mCCI). Following mCCI, rats acquired an active place avoidance task by learning the location of a stationary shock zone on a rotating arena. Rats acquired this task with a training protocol using a 10-minute intertrial interval. Mildly injured rats had an apparent deficit in long-term memory since they did not acquire the task when the intertrial interval was increased to 24 h. Mildly injured rats also had an apparent deficit in set shifting since, after successfully learning one shock zone location they did not learn the location of a second shock zone. MINO plus NAC synergistically limited these behavioral deficits in long-term memory and set shifting. mCCI also produced neuroinflammation at the impact site and at distal white matter tracts including the corpus callosum. At the impact site, MINO plus NAC attenuated CD68-expressing phagocytic microglia without altering neutrophil infiltration or astrocyte activation. The drugs had no effect on astrocyte activation in the corpus callosum or hippocampus. In the corpus callosum, MINO plus NAC decreased CD68 expression yet increased overall microglial activation as measured by Iba-1. MINO plus NAC acted synergistically to increase Iba-1 expression since MINO alone suppressed expression and NAC alone had no effect. Despite the known anti-inflammatory actions of the individual drugs, MINO plus NAC appeared to modulate, rather than suppress neuroinflammation. This modulation of neuroinflammation may underlie the synergistic improvement in memory and set-shifting by the drug combination after mCCI.


Subject(s)
Acetylcysteine/administration & dosage , Brain Injuries/prevention & control , Cognition Disorders/prevention & control , Disease Models, Animal , Memory Disorders/prevention & control , Minocycline/administration & dosage , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Brain Injuries/pathology , Brain Injuries/physiopathology , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Drug Synergism , Drug Therapy, Combination , Inflammation/pathology , Inflammation/prevention & control , Memory Disorders/pathology , Memory Disorders/physiopathology , Neuroprotective Agents/administration & dosage , Rats , Rats, Sprague-Dawley
5.
PLoS One ; 8(1): e53775, 2013.
Article in English | MEDLINE | ID: mdl-23349742

ABSTRACT

Traumatic brain injury (TBI) selectively damages white matter. White matter damage does not produce deficits in many behavioral tests used to analyze experimental TBI. Rats were impaired on an active place avoidance task following inactivation of one hippocampal injection of tetrodotoxin. The need for both hippocampi suggests that acquisition of the active place avoidance task may require interhippocampal communication. The controlled cortical impact model of TBI demyelinates midline white matter and impairs rats on the active place avoidance task. One white matter region that is demyelinated is the fimbria that contains hippocampal commissural fibers. We therefore tested whether demyelination of the fimbria produces deficits in active place avoidance. Lysophosphatidylcholine (LPC) was injected stereotaxically to produce a cycle of demyelination-remyelination of the fimbria. At 4 days, myelin loss was observed in the fimbria of LPC-, but not saline-injected rats. Fourteen days after injection, myelin content increased in LPC-, but not saline-injected rats. Three days after injection, both saline- and LPC-injected rats had similar performance on an open field and passive place avoidance task in which the rat avoided a stationary shock zone on a stationary arena. The following day, on the active place avoidance task, LPC-injected rats had a significantly higher number of shock zone entrances suggesting learning was impaired. At 14 days after injection, saline- and LPC-injected rats had similar performance on open field and passive place avoidance. On active place avoidance, however, saline- and LPC-injected rats had a similar number of total entrances suggesting that the impairment seen at 4 days was no longer present at 14 days. These data suggest that active place avoidance is highly sensitive to white matter injury.


Subject(s)
Behavior, Animal/physiology , Demyelinating Diseases/physiopathology , Fornix, Brain/physiology , Fornix, Brain/physiopathology , Myelin Sheath/physiology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Behavior, Animal/drug effects , Demyelinating Diseases/chemically induced , Fornix, Brain/drug effects , Lysophosphatidylcholines/pharmacology , Myelin Sheath/drug effects , Rats , Rats, Sprague-Dawley , Time Factors
6.
PLoS One ; 7(5): e36475, 2012.
Article in English | MEDLINE | ID: mdl-22615770

ABSTRACT

The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of inflammation. For a better understanding of the role of sphingosine kinase activation during neuroinflammation, we developed a bacterial lipopolysaccharide (LPS)-induced brain injury model. The onset of the inflammatory response was observed beginning 4 hours after intracerebral injection of LPS into the lateral ventricles of the brain. A comparison of established neuroinflammatory parameters such as white matter rarefactions, development of cytotoxic edema, astrogliosis, loss of oligodendrocytes, and major cytokines levels in wild type and knockout mice suggested that the neuroinflammatory response in SphK1-/- mice was significantly upregulated. At 6 hours after intracerebroventricular injection of LPS in SphK1-/- mice, the immunoreactivity of the microglia markers and astrocyte marker glial fibrillary acidic protein (GFAP) were significantly increased, while the oligodendrocyte marker O4 was decreased compared to WT mice. Furthermore, western blotting data showed increased levels of GFAP. These results suggest that SphK1 activation is involved in the regulation of LPS induced brain injury. RESEARCH HIGHLIGHTS: • Lipopolysaccharide (LPS) intracerebral injection induces severe neuroinflammation. • Sphingosine kinase 1 deletion worsens the effect of the LPS. • Overexpression of SphK1 might be a potential new treatment approach to neuroinflammation.


Subject(s)
Central Nervous System Diseases/chemically induced , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Animals , Base Sequence , DNA Primers , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...